Spaces:
Sleeping
Sleeping
File size: 30,230 Bytes
d0681c4 e297f70 d0681c4 e297f70 d0681c4 e4c72d9 d0681c4 f39454e d0681c4 e4c72d9 d0681c4 f39454e d0681c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
import os
import sys
import gradio as gr
from PIL import Image
import tempfile
import shutil
from pathlib import Path
from kraken.lib import vgsl
from kraken.lib import models
from kraken import serialization
import logging
import numpy as np
import cv2
from kraken import blla, rpred
from kraken.containers import BaselineLine
import json
from jinja2 import Environment, FileSystemLoader
import base64
import io
from jinja2 import Template
import re
import time
# Configure logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.WARNING)
logging.getLogger('kraken').setLevel(logging.WARNING)
logging.getLogger('kraken.serialization').setLevel(logging.WARNING)
logging.getLogger('kraken.blla').setLevel(logging.WARNING)
logging.getLogger('kraken.lib.models').setLevel(logging.WARNING)
# Constants - Use relative paths for Hugging Face
MODELS_DIR = Path("models")
SEG_MODELS_DIR = MODELS_DIR / "seg"
REC_MODELS_DIR = MODELS_DIR / "rec"
# Embedded template
PAGEXML_TEMPLATE = '''{%+ macro render_line(line) +%}
<TextLine id="{{ line.id }}" {% if line.tags and "type" in line.tags %}custom="structure {type:{{ line.tags["type"] }};}"{% endif %}>
{% if line.boundary %}
<Coords points="{% for point in line.boundary %}{{ point|join(',') }}{% if not loop.last %} {% endif %}{% endfor %}"/>
{% endif %}
{% if line.baseline %}
<Baseline points="{% for point in line.baseline %}{{ point|join(',') }}{% if not loop.last %} {% endif %}{% endfor %}"/>
{% endif %}
{% if line.text is string %}
<TextEquiv{% if line.confidences|length %} conf="{{ (line.confidences|sum / line.confidences|length)|round(4) }}"{% endif %}><Unicode>{{ line.text|e }}</Unicode></TextEquiv>
{% else %}
{% for segment in line.recognition %}
<Word id="segment_{{ segment.index }}">
{% if segment.boundary %}
<Coords points="{% for point in segment.boundary %}{{ point|join(',') }}{% if not loop.last %} {% endif %}{% endfor %}"/>
{% else %}
<Coords points="{{ segment.bbox[0] }},{{ segment.bbox[1] }} {{ segment.bbox[0] }},{{ segment.bbox[3] }} {{ segment.bbox[2] }},{{ segment.bbox[3] }} {{ segment.bbox[2] }},{{ segment.bbox[1] }}"/>
{% endif %}
{% for char in segment.recognition %}
<Glyph id="char_{{ char.index }}">
<Coords points="{% for point in char.boundary %}{{ point|join(',') }}{% if not loop.last %} {% endif %}{% endfor %}"/>
<TextEquiv conf="{{ char.confidence|round(4) }}"><Unicode>{{ char.text|e }}</Unicode></TextEquiv>
</Glyph>
{% endfor %}
<TextEquiv conf="{{ (segment.confidences|sum / segment.confidences|length)|round(4) }}"><Unicode>{{ segment.text|e }}</Unicode></TextEquiv>
</Word>
{% endfor %}
{%+ if line.confidences|length %}<TextEquiv conf="{{ (line.confidences|sum / line.confidences|length)|round(4) }}"><Unicode>{% for segment in line.recognition %}{{ segment.text|e }}{% endfor %}</Unicode></TextEquiv>{% endif +%}
{% endif %}
</TextLine>
{%+ endmacro %}
<?xml version="1.0" encoding="UTF-8"?>
<PcGts xmlns="http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15 http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15/pagecontent.xsd">
<Metadata>
<Creator>kraken {{ metadata.version }}</Creator>
<Created>{{ page.date }}</Created>
<LastChange>{{ page.date }}</LastChange>
</Metadata>
<Page imageFilename="{{ page.name }}" imageWidth="{{ page.size[0] }}" imageHeight="{{ page.size[1] }}" {% if page.base_dir %}readingDirection="{{ page.base_dir }}"{% endif %}>
{% for entity in page.entities %}
{% if entity.type == "region" %}
{% if loop.previtem and loop.previtem.type == 'line' %}
</TextRegion>
{% endif %}
<TextRegion id="{{ entity.id }}" {% if entity.tags and "type" in entity.tags %}custom="structure {type:{{ entity.tags["type"] }};}"{% endif %}>
{% if entity.boundary %}<Coords points="{% for point in entity.boundary %}{{ point|join(',') }}{% if not loop.last %} {% endif %}{% endfor %}"/>{% endif %}
{%- for line in entity.lines -%}
{{ render_line(line) }}
{%- endfor %}
</TextRegion>
{% else %}
{% if not loop.previtem or loop.previtem.type != 'line' %}
<TextRegion id="textblock_{{ loop.index }}">
<Coords points="0,0 0,{{ page.size[1] }} {{ page.size[0] }},{{ page.size[1] }} {{ page.size[0] }},0"/>
{% endif %}
{{ render_line(entity) }}
{% if loop.last %}
</TextRegion>
{% endif %}
{% endif %}
{% endfor %}
</Page>
</PcGts>'''
# Create Jinja environment
TEMPLATE_DIR = Path("templates")
TEMPLATE_DIR.mkdir(exist_ok=True)
_ENV = Environment(loader=FileSystemLoader(str(TEMPLATE_DIR)))
def seg_rec_image(image_path, seg_model, rec_model, output_dir=None):
try:
im = Image.open(image_path)
baseline_seg = blla.segment(im, model=seg_model)
# Run recognition and collect full BaselineOCRRecord objects
pred_it = rpred.rpred(network=rec_model, im=im, bounds=baseline_seg, pad=16)
records = [record for record in pred_it]
# Attach recognition results to segmentation lines
for line, rec_line in zip(baseline_seg.lines, records):
# Debug logging for recognition results
logger.debug(f'Recognition result - Prediction: {rec_line.prediction}')
logger.debug(f'Recognition result - Confidences: {rec_line.confidences}')
# Ensure the line has both prediction and confidence values
line.prediction = rec_line.prediction
line.text = rec_line.prediction # Set text field for serialization
# Store per-character confidences
line.confidences = rec_line.confidences # Keep the list of confidences
# Debug logging for line object
logger.debug(f'Line {line.id} - Prediction: {line.prediction}')
logger.debug(f'Line {line.id} - Confidences: {line.confidences}')
# Construct PAGE-XML segmentation only data
pagexml_seg_only = serialization.serialize(baseline_seg, image_size=im.size, template='pagexml', sub_line_segmentation=False)
# Serialize with recognition results
pagexml = serialization.serialize(baseline_seg,
image_size=im.size,
template='custom_pagexml',
template_source='custom',
sub_line_segmentation=False)
base_name = os.path.splitext(os.path.basename(image_path))[0]
if output_dir:
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, base_name + '.xml')
else:
output_path = os.path.splitext(image_path)[0] + '.xml'
with open(output_path, 'w') as fp:
fp.write(pagexml)
print(f"β
Segmented/recognized: {os.path.basename(image_path)} β {os.path.basename(output_path)}")
except Exception as e:
print(f"β Failed to process {image_path}: {e}")
import traceback
traceback.print_exc()
# Create template files
def create_templates():
"""Create Jinja templates for visualization."""
# Image template with SVG for visualization
image_template = """
<div class="visualization-container">
<div class="image-container">
<svg width="{{ width }}" height="{{ height }}" viewBox="0 0 {{ width }} {{ height }}">
<image href="data:image/png;base64,{{ image_base64 }}" width="{{ width }}" height="{{ height }}"/>
{% for line in lines %}
<a class="textline line{{loop.index}}" onmouseover="document.querySelectorAll('.line{{loop.index}}').forEach(element => {element.classList.add('highlighted')});" onmouseout="document.querySelectorAll('*').forEach(element => {element.classList.remove('highlighted')});">
<path class="line-boundary" d="M {{ line.boundary|join(' L ') }} Z" fill="rgba(0, 128, 255, 0.2)" stroke="none"/>
<path class="line-baseline" d="M {{ line.baseline|join(' L ') }}" stroke="red" stroke-width="1" fill="none"/>
</a>
{% endfor %}
</svg>
</div>
<div class="transcription-container">
{% for line in lines %}
<span class="textline line{{loop.index}}" onmouseover="document.querySelectorAll('.line{{loop.index}}').forEach(element => {element.classList.add('highlighted')});" onmouseout="document.querySelectorAll('*').forEach(element => {element.classList.remove('highlighted')});">
<span class="line-number">{{ loop.index }}:</span>
<span class="line-text">{{ line.text }}</span>
{% if line.confidence %}
<span class="line-confidence">({{ "%.2f"|format(line.confidence) }})</span>
{% endif %}
</span>
<br>
{% endfor %}
</div>
</div>
<style>
.visualization-container {
display: flex;
gap: 20px;
max-height: 1000px;
}
.image-container {
flex: 2;
overflow: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.image-container svg {
display: block;
width: 100%;
height: auto;
max-width: 100%;
}
.transcription-container {
flex: 1;
overflow-y: auto;
padding: 10px;
border: 1px solid #ddd;
border-radius: 4px;
}
/* Synchronize scrolling between containers */
.image-container, .transcription-container {
scroll-behavior: smooth;
}
.image-container::-webkit-scrollbar, .transcription-container::-webkit-scrollbar {
width: 8px;
}
.image-container::-webkit-scrollbar-track, .transcription-container::-webkit-scrollbar-track {
background: #f1f1f1;
}
.image-container::-webkit-scrollbar-thumb, .transcription-container::-webkit-scrollbar-thumb {
background: #888;
border-radius: 4px;
}
.image-container::-webkit-scrollbar-thumb:hover, .transcription-container::-webkit-scrollbar-thumb:hover {
background: #555;
}
.textline {
padding: 5px;
cursor: pointer;
display: inline-block;
unicode-bidi: bidi-override;
}
.textline:hover,
.textline.highlighted {
background-color: rgba(0, 128, 255, 0.1);
}
.textline:hover .line-boundary,
.textline.highlighted .line-boundary {
fill: rgba(0, 255, 255, 0.3);
}
.textline:hover .line-baseline,
.textline.highlighted .line-baseline {
stroke: yellow;
}
.line-number {
color: #666;
margin-right: 5px;
}
.line-confidence {
color: #888;
font-size: 0.9em;
margin-left: 5px;
}
/* RTL text support */
.textline[dir="rtl"] {
text-align: right;
}
.textline[dir="ltr"] {
text-align: left;
}
</style>
<script>
// Synchronize scrolling between containers
const imageContainer = document.querySelector('.image-container');
const textContainer = document.querySelector('.transcription-container');
function syncScroll(source, target) {
const ratio = target.scrollHeight / source.scrollHeight;
target.scrollTop = source.scrollTop * ratio;
}
imageContainer.addEventListener('scroll', () => syncScroll(imageContainer, textContainer));
textContainer.addEventListener('scroll', () => syncScroll(textContainer, imageContainer));
// Function to detect text direction
function detectTextDirection(text) {
const rtlChars = /[\u0591-\u07FF\u200F\u202B\u202E\uFB1D-\uFDFD\uFE70-\uFEFC]/;
return rtlChars.test(text) ? 'rtl' : 'ltr';
}
// Add direction attribute to text lines
function updateTextDirections() {
document.querySelectorAll('.textline').forEach(line => {
const text = line.textContent;
line.setAttribute('dir', detectTextDirection(text));
});
}
// Update text directions when visualization changes
const observer = new MutationObserver(updateTextDirections);
observer.observe(document.body, { childList: true, subtree: true });
</script>
"""
# Transcription template
transcription_template = """
<div class="transcription-container" style="max-height: 600px; overflow-y: auto;">
{% for line in lines %}
<span class="textline line{{loop.index}}" onmouseover="document.querySelectorAll('.line{{loop.index}}').forEach(element => {element.classList.add('highlighted')});" onmouseout="document.querySelectorAll('*').forEach(element => {element.classList.remove('highlighted')});">
<span class="line-number">{{ loop.index }}:</span>
<span class="line-text">{{ line.text }}</span>
{% if line.confidence %}
<span class="line-confidence">({{ "%.2f"|format(line.confidence) }})</span>
{% endif %}
</span>
<br>
{% endfor %}
</div>
<style>
.textline {
padding: 5px;
cursor: pointer;
display: inline-block;
}
.textline:hover,
.textline.highlighted {
background-color: rgba(0, 128, 255, 0.1);
}
.line-number {
color: #666;
margin-right: 5px;
}
.line-confidence {
color: #888;
font-size: 0.9em;
margin-left: 5px;
}
</style>
"""
# Write templates
with open(TEMPLATE_DIR / "image.html", "w") as f:
f.write(image_template)
with open(TEMPLATE_DIR / "transcription.html", "w") as f:
f.write(transcription_template)
def ensure_template_exists():
"""Create the template file if it doesn't exist."""
template_path = os.path.join(os.path.dirname(__file__), 'custom_pagexml')
if not os.path.exists(template_path):
with open(template_path, 'w', encoding='utf-8') as f:
f.write(PAGEXML_TEMPLATE)
def get_model_files(directory):
"""Get list of .mlmodel files from directory."""
return [f for f in os.listdir(directory) if f.endswith('.mlmodel')]
def load_models():
"""Load all available models."""
seg_models = {}
rec_models = {}
# Load segmentation models
for model_file in get_model_files(SEG_MODELS_DIR):
try:
model_path = os.path.join(SEG_MODELS_DIR, model_file)
seg_models[model_file] = vgsl.TorchVGSLModel.load_model(model_path)
except Exception as e:
print(f"Error loading segmentation model {model_file}: {str(e)}")
# Load recognition models
for model_file in get_model_files(REC_MODELS_DIR):
try:
model_path = os.path.join(REC_MODELS_DIR, model_file)
rec_models[model_file] = models.load_any(model_path)
except Exception as e:
print(f"Error loading recognition model {model_file}: {str(e)}")
return seg_models, rec_models
def process_image(image, seg_model, rec_model):
"""Process image and return segmentation and recognition results."""
# Run segmentation
baseline_seg = blla.segment(image, model=seg_model)
# Run recognition
pred_it = rpred.rpred(network=rec_model, im=image, bounds=baseline_seg, pad=16)
records = [record for record in pred_it]
# Attach recognition results to segmentation lines
for line, rec_line in zip(baseline_seg.lines, records):
line.prediction = rec_line.prediction
line.text = rec_line.prediction
line.confidences = rec_line.confidences
return baseline_seg
def render_image(image, baseline_seg):
"""Render image with SVG overlay."""
# Convert image to base64
buffered = io.BytesIO()
image.save(buffered, format="PNG")
image_base64 = base64.b64encode(buffered.getvalue()).decode()
# Get image dimensions
width, height = image.size
# Prepare lines data
lines = []
for line in baseline_seg.lines:
# Convert boundary points to SVG path
boundary_points = []
for point in line.boundary:
boundary_points.append(f"{point[0]},{point[1]}")
# Convert baseline points to SVG path
baseline_points = []
for point in line.baseline:
baseline_points.append(f"{point[0]},{point[1]}")
# Get text and determine direction
text = line.text if hasattr(line, 'text') else ''
# Check if text contains RTL characters (Hebrew, Arabic, etc.)
rtl_chars = re.compile(r'[\u0591-\u07FF\u200F\u202B\u202E\uFB1D-\uFDFD\uFE70-\uFEFC\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF\uFB50-\uFDFF\uFE70-\uFEFF]')
is_rtl = bool(rtl_chars.search(text))
lines.append({
'boundary': boundary_points,
'baseline': baseline_points,
'text': text,
'confidence': line.confidence if hasattr(line, 'confidence') else None,
'is_rtl': is_rtl
})
# Render template
template = """
<div class="visualization-container">
<div class="image-container">
<svg width="{{ width }}" height="{{ height }}" viewBox="0 0 {{ width }} {{ height }}">
<image href="data:image/png;base64,{{ image_base64 }}" width="{{ width }}" height="{{ height }}"/>
{% for line in lines %}
<a class="textline line{{loop.index}}" onmouseover="document.querySelectorAll('.line{{loop.index}}').forEach(element => {element.classList.add('highlighted')});" onmouseout="document.querySelectorAll('*').forEach(element => {element.classList.remove('highlighted')});">
<path class="line-boundary" d="M {{ line.boundary|join(' L ') }} Z" fill="rgba(0, 128, 255, 0.2)" stroke="none"/>
<path class="line-baseline" d="M {{ line.baseline|join(' L ') }}" stroke="red" stroke-width="1" fill="none"/>
</a>
{% endfor %}
</svg>
</div>
<div class="transcription-container">
{% for line in lines %}
<div class="textline-container {% if line.is_rtl %}rtl{% else %}ltr{% endif %}">
<span class="textline line{{loop.index}}" onmouseover="document.querySelectorAll('.line{{loop.index}}').forEach(element => {element.classList.add('highlighted')});" onmouseout="document.querySelectorAll('*').forEach(element => {element.classList.remove('highlighted')});">
<span class="line-number">{{ loop.index }}:</span>
<span class="line-text">{{ line.text }}</span>
{% if line.confidence %}
<span class="line-confidence">({{ "%.2f"|format(line.confidence) }})</span>
{% endif %}
</span>
</div>
{% endfor %}
</div>
</div>
<style>
.visualization-container {
display: flex;
gap: 20px;
max-height: 1000px;
}
.image-container {
flex: 2;
overflow: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.image-container svg {
display: block;
width: 100%;
height: auto;
max-width: 100%;
}
.transcription-container {
flex: 1;
overflow-y: auto;
padding: 10px;
border: 1px solid #ddd;
border-radius: 4px;
}
/* Synchronize scrolling between containers */
.image-container, .transcription-container {
scroll-behavior: smooth;
}
.image-container::-webkit-scrollbar, .transcription-container::-webkit-scrollbar {
width: 8px;
}
.image-container::-webkit-scrollbar-track, .transcription-container::-webkit-scrollbar-track {
background: #f1f1f1;
}
.image-container::-webkit-scrollbar-thumb, .transcription-container::-webkit-scrollbar-thumb {
background: #888;
border-radius: 4px;
}
.image-container::-webkit-scrollbar-thumb:hover, .transcription-container::-webkit-scrollbar-thumb:hover {
background: #555;
}
.textline-container {
padding: 5px;
margin: 2px 0;
border-radius: 4px;
}
.textline-container.rtl {
direction: rtl;
text-align: right;
}
.textline-container.ltr {
direction: ltr;
text-align: left;
}
.textline {
cursor: pointer;
display: inline-block;
width: 100%;
}
.textline:hover,
.textline.highlighted {
background-color: rgba(0, 128, 255, 0.1);
}
.textline:hover .line-boundary,
.textline.highlighted .line-boundary {
fill: rgba(0, 255, 255, 0.3);
}
.textline:hover .line-baseline,
.textline.highlighted .line-baseline {
stroke: yellow;
}
.line-number {
color: #666;
margin-right: 5px;
}
.line-text {
unicode-bidi: bidi-override;
}
.line-confidence {
color: #888;
font-size: 0.9em;
margin-left: 5px;
}
</style>
<script>
// Synchronize scrolling between containers
const imageContainer = document.querySelector('.image-container');
const textContainer = document.querySelector('.transcription-container');
function syncScroll(source, target) {
const ratio = target.scrollHeight / source.scrollHeight;
target.scrollTop = source.scrollTop * ratio;
}
imageContainer.addEventListener('scroll', () => syncScroll(imageContainer, textContainer));
textContainer.addEventListener('scroll', () => syncScroll(textContainer, imageContainer));
</script>
"""
return Template(template).render(
width=width,
height=height,
image_base64=image_base64,
lines=lines
)
def get_example_images():
"""Get list of example images from the examples directory."""
examples_dir = Path(__file__).parent / "examples"
if not examples_dir.exists():
return []
# Combine both glob patterns into a single list
return [str(f) for f in list(examples_dir.glob("*.jpg")) + list(examples_dir.glob("*.png"))]
def process_and_visualize(image, seg_model_name, rec_model_name, progress=gr.Progress()):
try:
if image is None:
yield "β Please upload an image first.", None, None, None, None, None
return
yield "π Starting processing...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
progress(0.1, desc="Loading models...")
yield "π¦ Loading models...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
seg_models, rec_models = load_models()
seg_model = seg_models[seg_model_name]
rec_model = rec_models[rec_model_name]
progress(0.3, desc="Running Segmentation...")
yield "βοΈ Running segmentation...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
baseline_seg = blla.segment(image, model=seg_model)
progress(0.6, desc="Running Recognition...")
yield "π Running text recognition...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
pred_it = rpred.rpred(network=rec_model, im=image, bounds=baseline_seg, pad=16)
records = [record for record in pred_it]
for line, rec_line in zip(baseline_seg.lines, records):
line.prediction = rec_line.prediction
line.text = rec_line.prediction
line.confidences = rec_line.confidences
progress(0.85, desc="Generating PageXML...")
yield "π Generating PageXML output...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
with tempfile.TemporaryDirectory() as temp_dir:
input_path = os.path.join(temp_dir, "temp.png")
image.save(input_path)
seg_rec_image(input_path, seg_model, rec_model, temp_dir)
output_xml = os.path.join(temp_dir, "temp.xml")
xml_content = open(output_xml, 'r', encoding='utf-8').read() if os.path.exists(output_xml) else "β οΈ Error generating XML output."
progress(1.0, desc="Rendering results...")
yield "β
Done! Switch to visualization!", render_image(image, baseline_seg), xml_content, gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
except Exception as e:
yield f"β Error: {str(e)}", None, None, gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
def main():
# Create necessary directories and templates
SEG_MODELS_DIR.mkdir(parents=True, exist_ok=True)
REC_MODELS_DIR.mkdir(parents=True, exist_ok=True)
ensure_template_exists()
create_templates()
# Load available models
seg_models, rec_models = load_models()
if not seg_models:
print("No segmentation models found in app/models/seg. Please add .mlmodel files.")
return
if not rec_models:
print("No recognition models found in app/models/rec. Please add .mlmodel files.")
return
# Create Gradio interface
with gr.Blocks(title="Kraken OCR on Samaritan manuscripts") as demo:
gr.Markdown("# Kraken OCR on Samaritan manuscripts")
gr.Markdown("Upload an image and select models to process it.")
with gr.Tabs() as tabs:
with gr.Tab("Upload Image") as upload_tab:
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="pil", label="Input Image", height=400)
with gr.Row():
seg_model = gr.Dropdown(choices=list(seg_models.keys()), label="Segmentation Model", value=list(seg_models.keys())[0])
rec_model = gr.Dropdown(choices=list(rec_models.keys()), label="Recognition Model", value=list(rec_models.keys())[0])
process_btn = gr.Button("Process Image")
status_box = gr.Markdown("", visible=True)
with gr.Column(scale=1):
gr.Markdown("### Example Images")
examples = gr.Gallery(
get_example_images(),
show_label=False,
interactive=True,
allow_preview=False,
object_fit="cover",
columns=2,
height=400,
elem_classes="example-gallery"
)
with gr.Tab("Visualization", interactive=False) as vis_tab:
visualization_output = gr.HTML(label="Visualization")
with gr.Tab("PageXML", interactive=False) as xml_tab:
xml_output = gr.Textbox(label="PageXML", lines=20, max_lines=50, show_copy_button=True)
# Add custom CSS for the gallery
gr.HTML("""
<style>
.example-gallery {
overflow-y: auto !important;
max-height: 400px !important;
}
.example-gallery img {
width: 100% !important;
height: 150px !important;
object-fit: cover !important;
border-radius: 4px !important;
cursor: pointer !important;
transition: transform 0.2s !important;
}
.example-gallery img:hover {
transform: scale(1.05) !important;
}
</style>
""")
process_btn.click(
process_and_visualize,
inputs=[image_input, seg_model, rec_model],
outputs=[status_box, visualization_output, xml_output, vis_tab, xml_tab, upload_tab],
show_progress=True
).then(
lambda: gr.Tabs(selected="Visualization"),
outputs=tabs
)
# Example image selection handler
def select_example(evt: gr.SelectData):
if not examples.value:
return None
selected = examples.value[evt.index]
return selected["image"]["path"]
examples.select(
select_example,
None,
image_input
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main()
|