File size: 8,787 Bytes
eeaa83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
from torch.utils import data
import numpy as np
from os.path import join as pjoin
import random
import codecs as cs
from tqdm import tqdm

import utils.paramUtil as paramUtil
from torch.utils.data._utils.collate import default_collate


def collate_fn(batch):
    batch.sort(key=lambda x: x[3], reverse=True)
    return default_collate(batch)


'''For use of training text-2-motion generative model'''
class Text2MotionDataset(data.Dataset):
    def __init__(self, dataset_name, is_test, w_vectorizer, feat_bias = 5, max_text_len = 20, unit_length = 4, shuffle=True):
        
        self.max_length = 20
        self.pointer = 0
        self.dataset_name = dataset_name
        self.is_test = is_test
        self.max_text_len = max_text_len
        self.unit_length = unit_length
        self.w_vectorizer = w_vectorizer
        if dataset_name == 't2m':
            self.data_root = './dataset/HumanML3D'
            self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
            self.text_dir = pjoin(self.data_root, 'texts')
            self.joints_num = 22
            radius = 4
            fps = 20
            self.max_motion_length = 196
            dim_pose = 263
            kinematic_chain = paramUtil.t2m_kinematic_chain
            self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
        elif dataset_name == 'kit':
            self.data_root = './dataset/KIT-ML'
            self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
            self.text_dir = pjoin(self.data_root, 'texts')
            self.joints_num = 21
            radius = 240 * 8
            fps = 12.5
            dim_pose = 251
            self.max_motion_length = 196
            kinematic_chain = paramUtil.kit_kinematic_chain
            self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'

        mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
        std = np.load(pjoin(self.meta_dir, 'std.npy'))
        
        if is_test:
            split_file = pjoin(self.data_root, 'test.txt')
        else:
            split_file = pjoin(self.data_root, 'val.txt')

        min_motion_len = 40 if self.dataset_name =='t2m' else 24
        # min_motion_len = 64

        joints_num = self.joints_num

        data_dict = {}
        id_list = []
        with cs.open(split_file, 'r') as f:
            for line in f.readlines():
                id_list.append(line.strip())

        new_name_list = []
        length_list = []
        for name in tqdm(id_list):
            try:
                motion = np.load(pjoin(self.motion_dir, name + '.npy'))
                if (len(motion)) < min_motion_len or (len(motion) >= 200):
                    continue
                text_data = []
                flag = False
                with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
                    for line in f.readlines():
                        text_dict = {}
                        line_split = line.strip().split('#')
                        caption = line_split[0]
                        tokens = line_split[1].split(' ')
                        f_tag = float(line_split[2])
                        to_tag = float(line_split[3])
                        f_tag = 0.0 if np.isnan(f_tag) else f_tag
                        to_tag = 0.0 if np.isnan(to_tag) else to_tag

                        text_dict['caption'] = caption
                        text_dict['tokens'] = tokens
                        if f_tag == 0.0 and to_tag == 0.0:
                            flag = True
                            text_data.append(text_dict)
                        else:
                            try:
                                n_motion = motion[int(f_tag*fps) : int(to_tag*fps)]
                                if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
                                    continue
                                new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                                while new_name in data_dict:
                                    new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                                data_dict[new_name] = {'motion': n_motion,
                                                       'length': len(n_motion),
                                                       'text':[text_dict]}
                                new_name_list.append(new_name)
                                length_list.append(len(n_motion))
                            except:
                                print(line_split)
                                print(line_split[2], line_split[3], f_tag, to_tag, name)
                                # break

                if flag:
                    data_dict[name] = {'motion': motion,
                                       'length': len(motion),
                                       'text': text_data}
                    new_name_list.append(name)
                    length_list.append(len(motion))
            except Exception as e:
                # print(e)
                pass

        name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
        self.mean = mean
        self.std = std
        self.length_arr = np.array(length_list)
        self.data_dict = data_dict
        self.name_list = name_list
        self.reset_max_len(self.max_length)
        self.shuffle = shuffle

    def reset_max_len(self, length):
        assert length <= self.max_motion_length
        self.pointer = np.searchsorted(self.length_arr, length)
        print("Pointer Pointing at %d"%self.pointer)
        self.max_length = length

    def inv_transform(self, data):
        return data * self.std + self.mean

    def forward_transform(self, data):
        return (data - self.mean) / self.std

    def __len__(self):
        return len(self.data_dict) - self.pointer

    def __getitem__(self, item):
        idx = self.pointer + item
        name = self.name_list[idx]
        data = self.data_dict[name]
        # data = self.data_dict[self.name_list[idx]]
        motion, m_length, text_list = data['motion'], data['length'], data['text']
        # Randomly select a caption
        text_data = random.choice(text_list)
        caption, tokens = text_data['caption'], text_data['tokens']

        if len(tokens) < self.max_text_len:
            # pad with "unk"
            tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
            sent_len = len(tokens)
            tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len)
        else:
            # crop
            tokens = tokens[:self.max_text_len]
            tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
            sent_len = len(tokens)
        pos_one_hots = []
        word_embeddings = []
        for token in tokens:
            word_emb, pos_oh = self.w_vectorizer[token]
            pos_one_hots.append(pos_oh[None, :])
            word_embeddings.append(word_emb[None, :])
        pos_one_hots = np.concatenate(pos_one_hots, axis=0)
        word_embeddings = np.concatenate(word_embeddings, axis=0)

        if self.unit_length < 10 and self.shuffle:
            coin2 = np.random.choice(['single', 'single', 'double'])
        else:
            coin2 = 'single'

        if coin2 == 'double':
            m_length = (m_length // self.unit_length - 1) * self.unit_length
        elif coin2 == 'single':
            m_length = (m_length // self.unit_length) * self.unit_length
        idx = random.randint(0, len(motion) - m_length)
        motion = motion[idx:idx+m_length]

        "Z Normalization"
        motion = (motion - self.mean) / self.std

        if m_length < self.max_motion_length and self.shuffle:
            motion = np.concatenate([motion,
                                     np.zeros((self.max_motion_length - m_length, motion.shape[1]))
                                     ], axis=0)

        return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens), name




def DATALoader(dataset_name, is_test,
                batch_size, w_vectorizer,
                num_workers = 8, unit_length = 4, shuffle=True) : 
    
    val_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, is_test, w_vectorizer, unit_length=unit_length, shuffle=shuffle),
                                              batch_size,
                                              shuffle = shuffle,
                                              num_workers=num_workers,
                                              collate_fn=collate_fn,
                                              drop_last = True)
    return val_loader


def cycle(iterable):
    while True:
        for x in iterable:
            yield x