File size: 11,242 Bytes
eeaa83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch.nn as nn
from models.encdec import Encoder, Decoder
from models.quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset
from models.t2m_trans import Decoder_Transformer, Encoder_Transformer
from exit.utils import generate_src_mask
import torch
from utils.humanml_utils import HML_UPPER_BODY_MASK, HML_LOWER_BODY_MASK, UPPER_JOINT_Y_MASK

class VQVAE_SEP(nn.Module):
    def __init__(self,
                 args,
                 nb_code=512,
                 code_dim=512,
                 output_emb_width=512,
                 down_t=3,
                 stride_t=2,
                 width=512,
                 depth=3,
                 dilation_growth_rate=3,
                 activation='relu',
                 norm=None,
                 moment=None,
                 sep_decoder=False):
        super().__init__()
        if args.dataname == 'kit':
            self.nb_joints = 21
            output_dim = 251
            upper_dim = 120        
            lower_dim = 131  
        else:
            self.nb_joints = 22
            output_dim = 263
            upper_dim = 156        
            lower_dim = 107 
        self.code_dim = code_dim
        if moment is not None:
            self.moment = moment
            self.register_buffer('mean_upper', torch.tensor([0.1216, 0.2488, 0.2967, 0.5027, 0.4053, 0.4100, 0.5703, 0.4030, 0.4078, 0.1994, 0.1992, 0.0661, 0.0639], dtype=torch.float32))
            self.register_buffer('std_upper', torch.tensor([0.0164, 0.0412, 0.0523, 0.0864, 0.0695, 0.0703, 0.1108, 0.0853, 0.0847, 0.1289, 0.1291, 0.2463, 0.2484], dtype=torch.float32))
        # self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
        
        # self.encoder = Encoder(output_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
        self.sep_decoder = sep_decoder
        if self.sep_decoder:
            self.decoder_upper = Decoder(upper_dim, int(code_dim/2), down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)        
            self.decoder_lower = Decoder(lower_dim, int(code_dim/2), down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)        
        else:
            self.decoder = Decoder(output_dim, code_dim, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)        


        self.num_code = nb_code

        self.encoder_upper = Encoder(upper_dim, int(code_dim/2), down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
        self.encoder_lower = Encoder(lower_dim, int(code_dim/2), down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
        self.quantizer_upper = QuantizeEMAReset(nb_code, int(code_dim/2), args)
        self.quantizer_lower = QuantizeEMAReset(nb_code, int(code_dim/2), args)

    def rand_emb_idx(self, x_quantized, quantizer, idx_noise):
        # x_quantized = x_quantized.detach()
        x_quantized = x_quantized.permute(0,2,1)
        mask = torch.bernoulli(idx_noise * torch.ones((*x_quantized.shape[:2], 1),
                                                device=x_quantized.device))
        r_indices = torch.randint(int(self.num_code/2), x_quantized.shape[:2], device=x_quantized.device)
        r_emb = quantizer.dequantize(r_indices)
        x_quantized = mask * r_emb + (1-mask) * x_quantized
        x_quantized = x_quantized.permute(0,2,1)
        return x_quantized
    
    def normalize(self, data):
        return (data - self.moment['mean']) / self.moment['std']
    
    def denormalize(self, data):
        return data * self.moment['std'] + self.moment['mean']
    
    def normalize_upper(self, data):
        return (data - self.mean_upper) / self.std_upper
    
    def denormalize_upper(self, data):
        return data * self.std_upper + self.mean_upper
    
    def shift_upper_down(self, data):
        data = data.clone()
        data = self.denormalize(data)
        shift_y = data[..., 3:4].clone()
        data[..., UPPER_JOINT_Y_MASK] -= shift_y
        _data = data.clone()
        data = self.normalize(data)
        data[..., UPPER_JOINT_Y_MASK] = self.normalize_upper(_data[..., UPPER_JOINT_Y_MASK])
        return data
    
    def shift_upper_up(self, data):
        _data = data.clone()
        data = self.denormalize(data)
        data[..., UPPER_JOINT_Y_MASK] = self.denormalize_upper(_data[..., UPPER_JOINT_Y_MASK])
        shift_y = data[..., 3:4].clone()
        data[..., UPPER_JOINT_Y_MASK] += shift_y
        data = self.normalize(data)
        return data
    
    def forward(self, x, *args, type='full', **kwargs):
        '''type=[full, encode, decode]'''
        if type=='full':
            x = x.float()
            x = self.shift_upper_down(x)

            upper_emb = x[..., HML_UPPER_BODY_MASK]
            lower_emb = x[..., HML_LOWER_BODY_MASK]
            upper_emb = self.preprocess(upper_emb)
            upper_emb = self.encoder_upper(upper_emb)
            upper_emb, loss_upper, perplexity = self.quantizer_upper(upper_emb)

            lower_emb = self.preprocess(lower_emb)
            lower_emb = self.encoder_lower(lower_emb)
            lower_emb, loss_lower, perplexity = self.quantizer_lower(lower_emb)
            loss = loss_upper + loss_lower

            if 'idx_noise' in kwargs and kwargs['idx_noise'] > 0:
                upper_emb = self.rand_emb_idx(upper_emb, self.quantizer_upper, kwargs['idx_noise'])
                lower_emb = self.rand_emb_idx(lower_emb, self.quantizer_lower, kwargs['idx_noise'])


            # x_in = self.preprocess(x)
            # x_encoder = self.encoder(x_in)
        
            # ## quantization
            # x_quantized, loss, perplexity  = self.quantizer(x_encoder)

            ## decoder
            if self.sep_decoder:
                x_decoder_upper = self.decoder_upper(upper_emb)
                x_decoder_upper = self.postprocess(x_decoder_upper)
                x_decoder_lower = self.decoder_lower(lower_emb)
                x_decoder_lower = self.postprocess(x_decoder_lower)
                x_out = merge_upper_lower(x_decoder_upper, x_decoder_lower)
                x_out = self.shift_upper_up(x_out)

            else:
                x_quantized = torch.cat([upper_emb, lower_emb], dim=1)
                x_decoder = self.decoder(x_quantized)
                x_out = self.postprocess(x_decoder)
            
            return x_out, loss, perplexity
        elif type=='encode':
            N, T, _ = x.shape
            x = self.shift_upper_down(x)

            upper_emb = x[..., HML_UPPER_BODY_MASK]
            upper_emb = self.preprocess(upper_emb)
            upper_emb = self.encoder_upper(upper_emb)
            upper_emb = self.postprocess(upper_emb)
            upper_emb = upper_emb.reshape(-1, upper_emb.shape[-1])
            upper_code_idx = self.quantizer_upper.quantize(upper_emb)
            upper_code_idx = upper_code_idx.view(N, -1)

            lower_emb = x[..., HML_LOWER_BODY_MASK]
            lower_emb = self.preprocess(lower_emb)
            lower_emb = self.encoder_lower(lower_emb)
            lower_emb = self.postprocess(lower_emb)
            lower_emb = lower_emb.reshape(-1, lower_emb.shape[-1])
            lower_code_idx = self.quantizer_lower.quantize(lower_emb)
            lower_code_idx = lower_code_idx.view(N, -1)

            code_idx = torch.cat([upper_code_idx.unsqueeze(-1), lower_code_idx.unsqueeze(-1)], dim=-1)
            return code_idx

        elif type=='decode':
            if self.sep_decoder:
                x_d_upper = self.quantizer_upper.dequantize(x[..., 0])
                x_d_upper = x_d_upper.permute(0, 2, 1).contiguous()
                x_d_upper = self.decoder_upper(x_d_upper)
                x_d_upper = self.postprocess(x_d_upper)

                x_d_lower = self.quantizer_lower.dequantize(x[..., 1])
                x_d_lower = x_d_lower.permute(0, 2, 1).contiguous()
                x_d_lower = self.decoder_lower(x_d_lower)
                x_d_lower = self.postprocess(x_d_lower)
            
                x_out = merge_upper_lower(x_d_upper, x_d_lower)
                x_out = self.shift_upper_up(x_out)
                return x_out
            else:
                x_d_upper = self.quantizer_upper.dequantize(x[..., 0])
                x_d_lower = self.quantizer_lower.dequantize(x[..., 1])
                x_d = torch.cat([x_d_upper, x_d_lower], dim=-1)
                x_d = x_d.permute(0, 2, 1).contiguous()
                x_decoder = self.decoder(x_d)
                x_out = self.postprocess(x_decoder)
                return x_out

    def preprocess(self, x):
        # (bs, T, Jx3) -> (bs, Jx3, T)
        x = x.permute(0,2,1).float()
        return x
    
    def postprocess(self, x):
        # (bs, Jx3, T) ->  (bs, T, Jx3)
        x = x.permute(0,2,1)
        return x


def merge_upper_lower(upper_emb, lower_emb):
    motion = torch.empty(*upper_emb.shape[:2], 263).to(upper_emb.device)
    motion[..., HML_UPPER_BODY_MASK] = upper_emb
    motion[..., HML_LOWER_BODY_MASK] = lower_emb
    return motion

def upper_lower_sep(motion, joints_num):
    # root
    _root = motion[..., :4] # root

    # position
    start_indx = 1 + 2 + 1
    end_indx = start_indx + (joints_num - 1) * 3
    positions = motion[..., start_indx:end_indx]
    positions = positions.view(*motion.shape[:2], (joints_num - 1), 3)

    # 6drot
    start_indx = end_indx
    end_indx = start_indx + (joints_num - 1) * 6
    _6d_rot = motion[..., start_indx:end_indx]
    _6d_rot = _6d_rot.view(*motion.shape[:2], (joints_num - 1), 6)

    # joint_velo
    start_indx = end_indx
    end_indx = start_indx + joints_num * 3
    joint_velo = motion[..., start_indx:end_indx]
    joint_velo = joint_velo.view(*motion.shape[:2], joints_num, 3)

    # foot_contact
    foot_contact = motion[..., end_indx:]

    ################################################################################################
    #### Lower Body
    if joints_num == 22:
        lower_body = torch.tensor([0,1,2,4,5,7,8,10,11])
    else:
        lower_body = torch.tensor([0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])
    lower_body_exclude_root = lower_body[1:] - 1

    LOW_positions = positions[:,:, lower_body_exclude_root].view(*motion.shape[:2], -1)
    LOW_6d_rot = _6d_rot[:,:, lower_body_exclude_root].view(*motion.shape[:2], -1)
    LOW_joint_velo = joint_velo[:,:, lower_body].view(*motion.shape[:2], -1)
    lower_emb = torch.cat([_root, LOW_positions, LOW_6d_rot, LOW_joint_velo, foot_contact], dim=-1)

    #### Upper Body
    if joints_num == 22:
        upper_body = torch.tensor([3,6,9,12,13,14,15,16,17,18,19,20,21])
    else:
        upper_body = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    upper_body_exclude_root = upper_body - 1

    UP_positions = positions[:,:, upper_body_exclude_root].view(*motion.shape[:2], -1)
    UP_6d_rot = _6d_rot[:,:, upper_body_exclude_root].view(*motion.shape[:2], -1)
    UP_joint_velo = joint_velo[:,:, upper_body].view(*motion.shape[:2], -1)
    upper_emb = torch.cat([UP_positions, UP_6d_rot, UP_joint_velo], dim=-1)

    return upper_emb, lower_emb