File size: 14,236 Bytes
eeaa83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
import clip
import models.vqvae as vqvae
from models.vqvae_sep import VQVAE_SEP
import models.t2m_trans as trans
import models.t2m_trans_uplow as trans_uplow
import numpy as np
from exit.utils import visualize_2motions
import options.option_transformer as option_trans



##### ---- CLIP ---- #####
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cpu'), jit=False)  # Must set jit=False for training
clip.model.convert_weights(clip_model)  # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
    p.requires_grad = False

# https://github.com/openai/CLIP/issues/111
class TextCLIP(torch.nn.Module):
    def __init__(self, model) :
        super(TextCLIP, self).__init__()
        self.model = model
        
    def forward(self,text):
        with torch.no_grad():
            word_emb = self.model.token_embedding(text).type(self.model.dtype)
            word_emb = word_emb + self.model.positional_embedding.type(self.model.dtype)
            word_emb = word_emb.permute(1, 0, 2)  # NLD -> LND
            word_emb = self.model.transformer(word_emb)
            word_emb = self.model.ln_final(word_emb).permute(1, 0, 2).float()
            enctxt = self.model.encode_text(text).float()
        return enctxt, word_emb
clip_model = TextCLIP(clip_model)

def get_vqvae(args, is_upper_edit):
    if not is_upper_edit:
        return vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
                            args.nb_code,
                            args.code_dim,
                            args.output_emb_width,
                            args.down_t,
                            args.stride_t,
                            args.width,
                            args.depth,
                            args.dilation_growth_rate)
    else:
        return VQVAE_SEP(args, ## use args to define different parameters in different quantizers
                        args.nb_code,
                        args.code_dim,
                        args.output_emb_width,
                        args.down_t,
                        args.stride_t,
                        args.width,
                        args.depth,
                        args.dilation_growth_rate,
                        moment={'mean': torch.from_numpy(args.mean).float(), 
                            'std': torch.from_numpy(args.std).float()},
                        sep_decoder=True)

def get_maskdecoder(args, vqvae, is_upper_edit):
    tranformer = trans if not is_upper_edit else trans_uplow
    return tranformer.Text2Motion_Transformer(vqvae,
                                num_vq=args.nb_code, 
                                embed_dim=args.embed_dim_gpt, 
                                clip_dim=args.clip_dim, 
                                block_size=args.block_size, 
                                num_layers=args.num_layers, 
                                num_local_layer=args.num_local_layer, 
                                n_head=args.n_head_gpt, 
                                drop_out_rate=args.drop_out_rate, 
                                fc_rate=args.ff_rate)

class MMM(torch.nn.Module):
    def __init__(self, args=None, is_upper_edit=False):
        super().__init__()
        self.is_upper_edit = is_upper_edit


        args.dataname = args.dataset_name = 't2m'

        self.vqvae = get_vqvae(args, is_upper_edit)
        ckpt = torch.load(args.resume_pth, map_location='cpu')
        self.vqvae.load_state_dict(ckpt['net'], strict=True)
        if is_upper_edit:
            class VQVAE_WRAPPER(torch.nn.Module):
                def __init__(self, vqvae) :
                    super().__init__()
                    self.vqvae = vqvae
                    
                def forward(self, *args, **kwargs):
                    return self.vqvae(*args, **kwargs)
            self.vqvae = VQVAE_WRAPPER(self.vqvae)
        self.vqvae.eval()
        self.vqvae

        self.maskdecoder = get_maskdecoder(args, self.vqvae, is_upper_edit)
        ckpt = torch.load(args.resume_trans, map_location='cpu')
        self.maskdecoder.load_state_dict(ckpt['trans'], strict=True)
        self.maskdecoder.train()
        self.maskdecoder

    def forward(self, text, lengths=-1, rand_pos=True):
        b = len(text)
        feat_clip_text = clip.tokenize(text, truncate=True)
        feat_clip_text, word_emb = clip_model(feat_clip_text)
        index_motion = self.maskdecoder(feat_clip_text, word_emb, type="sample", m_length=lengths, rand_pos=rand_pos, if_test=False)

        m_token_length = torch.ceil((lengths)/4).int()
        pred_pose_all = torch.zeros((b, 196, 263))
        for k in range(b):
            pred_pose = self.vqvae(index_motion[k:k+1, :m_token_length[k]], type='decode')
            pred_pose_all[k:k+1, :int(lengths[k].item())] = pred_pose
        return pred_pose_all

    def inbetween_eval(self, base_pose, m_length, start_f, end_f, inbetween_text):
        bs, seq = base_pose.shape[:2]
        tokens = -1*torch.ones((bs, 50), dtype=torch.long)
        m_token_length = torch.ceil((m_length)/4).int()
        start_t = torch.round((start_f)/4).int()
        end_t = torch.round((end_f)/4).int()

        for k in range(bs):
            index_motion = self.vqvae(base_pose[k:k+1, :m_length[k]], type='encode')
            tokens[k, :start_t[k]] = index_motion[0][:start_t[k]]
            tokens[k, end_t[k]:m_token_length[k]] = index_motion[0][end_t[k]:m_token_length[k]]

        text = clip.tokenize(inbetween_text, truncate=True)
        feat_clip_text, word_emb_clip = clip_model(text)

        mask_id = self.maskdecoder.num_vq + 2
        tokens[tokens==-1] = mask_id
        inpaint_index = self.maskdecoder(feat_clip_text, word_emb_clip, type="sample", m_length=m_length, token_cond=tokens)

        pred_pose_eval = torch.zeros((bs, seq, base_pose.shape[-1]))
        for k in range(bs):
            pred_pose = self.vqvae(inpaint_index[k:k+1, :m_token_length[k]], type='decode')
            pred_pose_eval[k:k+1, :int(m_length[k].item())] = pred_pose
        return pred_pose_eval

    def long_range(self, text, lengths, num_transition_token=2, output='concat', index_motion=None):
        b = len(text)
        feat_clip_text = clip.tokenize(text, truncate=True)
        feat_clip_text, word_emb = clip_model(feat_clip_text)
        if index_motion is None:
            index_motion = self.maskdecoder(feat_clip_text, word_emb, type="sample", m_length=lengths, rand_pos=False)

        m_token_length = torch.ceil((lengths)/4).int()
        if output == 'eval':
            frame_length = m_token_length * 4
            m_token_length = m_token_length.clone()
            m_token_length = m_token_length - 2*num_transition_token
            m_token_length[[0,-1]] += num_transition_token # first and last have transition only half
        
        half_token_length = (m_token_length/2).int()
        idx_full_len = half_token_length >= 24
        half_token_length[idx_full_len] = half_token_length[idx_full_len] - 1

        mask_id = self.maskdecoder.num_vq + 2
        tokens = -1*torch.ones((b-1, 50), dtype=torch.long)
        transition_train_length = []
        
        for i in range(b-1):
            if output == 'concat':
                i_index_motion = index_motion[i]
                i1_index_motion = index_motion[i+1]
            if output == 'eval':
                if i == 0:
                    i_index_motion = index_motion[i, :m_token_length[i]]
                else:
                    i_index_motion = index_motion[i, num_transition_token:m_token_length[i] + num_transition_token]
                if i == b-1:
                    i1_index_motion = index_motion[i+1, :m_token_length[i+1]]
                else:
                    i1_index_motion = index_motion[i+1, 
                                                num_transition_token:m_token_length[i+1] + num_transition_token]
            left_end = half_token_length[i]
            right_start = left_end + num_transition_token
            end = right_start + half_token_length[i+1]

            tokens[i, :left_end] = i_index_motion[m_token_length[i]-left_end: m_token_length[i]]
            tokens[i, left_end:right_start] = mask_id
            tokens[i, right_start:end] = i1_index_motion[:half_token_length[i+1]]
            transition_train_length.append(end)
        transition_train_length = torch.tensor(transition_train_length).to(index_motion.device)
        text = clip.tokenize(text[:-1], truncate=True)
        feat_clip_text, word_emb_clip = clip_model(text)
        inpaint_index = self.maskdecoder(feat_clip_text, word_emb_clip, type="sample", m_length=transition_train_length*4, token_cond=tokens, max_steps=1)
        
        if output == 'concat':
            all_tokens = []
            for i in range(b-1):
                all_tokens.append(index_motion[i, :m_token_length[i]])
                all_tokens.append(inpaint_index[i, tokens[i] == mask_id])
            all_tokens.append(index_motion[-1, :m_token_length[-1]])
            all_tokens = torch.cat(all_tokens).unsqueeze(0)
            pred_pose = self.vqvae(all_tokens, type='decode')
            return pred_pose
        elif output == 'eval':
            all_tokens = []
            for i in range(b):
                motion_token = index_motion[i, :m_token_length[i]]
                if i == 0:
                    first_current_trans_tok = inpaint_index[i, tokens[i] == mask_id]
                    all_tokens.append(motion_token)
                    all_tokens.append(first_current_trans_tok)
                else:
                    if i < b-1:
                        first_current_trans_tok = inpaint_index[i, tokens[i] == mask_id]
                        all_tokens.append(motion_token)
                        all_tokens.append(first_current_trans_tok)
                    else:
                        all_tokens.append(motion_token)
            all_tokens = torch.cat(all_tokens)
            pred_pose_concat = self.vqvae(all_tokens.unsqueeze(0), type='decode')
            
            trans_frame = num_transition_token*4
            pred_pose = torch.zeros((b, 196, 263))
            current_point = 0
            for i in range(b):
                if i == 0:
                    start_f = torch.tensor(0)
                    end_f = frame_length[i]
                else:
                    start_f = current_point - trans_frame
                    end_f = start_f + frame_length[i]
                current_point = end_f
                pred_pose[i, :frame_length[i]] = pred_pose_concat[0, start_f: end_f]
            return pred_pose

    def upper_edit(self, pose, m_length, upper_text, lower_mask=None):
        pose = pose.clone().float() # bs, nb_joints, joints_dim, seq_len
        m_tokens_len = torch.ceil((m_length)/4)
        bs, seq = pose.shape[:2]
        max_motion_length = int(seq/4) + 1
        mot_end_idx = self.vqvae.vqvae.num_code
        mot_pad_idx = self.vqvae.vqvae.num_code + 1
        mask_id = self.vqvae.vqvae.num_code + 2
        target_lower = []
        for k in range(bs):
            target = self.vqvae(pose[k:k+1, :m_length[k]], type='encode')
            if m_tokens_len[k]+1 < max_motion_length:
                target = torch.cat([target, 
                                    torch.ones((1, 1, 2), dtype=int, device=target.device) * mot_end_idx, 
                                    torch.ones((1, max_motion_length-1-m_tokens_len[k].int().item(), 2), dtype=int, device=target.device) * mot_pad_idx], axis=1)
            else:
                target = torch.cat([target, 
                                    torch.ones((1, 1, 2), dtype=int, device=target.device) * mot_end_idx], axis=1)
            target_lower.append(target[..., 1])
        target_lower = torch.cat(target_lower, axis=0)

        ### lower mask ###
        if lower_mask is not None:
            lower_mask = torch.cat([lower_mask, torch.zeros(bs, 1, dtype=int)], dim=1).bool()
            target_lower_masked = target_lower.clone()
            target_lower_masked[lower_mask] = mask_id
            select_end = target_lower == mot_end_idx
            target_lower_masked[select_end] = target_lower[select_end]
        else:
            target_lower_masked = target_lower
        ##################

        pred_len = m_length
        pred_tok_len = m_tokens_len
        pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1]))

        # __upper_text__ = ['A man punches with right hand.'] * 32
        text = clip.tokenize(upper_text, truncate=True)
        feat_clip_text, word_emb_clip = clip_model(text)
        # index_motion = trans_encoder(feat_clip_text, idx_lower=target_lower_masked, word_emb=word_emb_clip, type="sample", m_length=pred_len, rand_pos=True, CFG=-1)
        index_motion = self.maskdecoder(feat_clip_text, target_lower_masked, word_emb_clip, type="sample", m_length=pred_len, rand_pos=True)
        for i in range(bs):
            all_tokens = torch.cat([
                index_motion[i:i+1, :int(pred_tok_len[i].item()), None],
                target_lower[i:i+1, :int(pred_tok_len[i].item()), None]
            ], axis=-1)
            pred_pose = self.vqvae(all_tokens, type='decode')
            pred_pose_eval[i:i+1, :int(pred_len[i].item())] = pred_pose

        return pred_pose_eval
    

if __name__ == '__main__':
    args = option_trans.get_args_parser()

# python generate.py --resume-pth '/home/epinyoan/git/MaskText2Motion/T2M-BD/output/vq/2023-07-19-04-17-17_12_VQVAE_20batchResetNRandom_8192_32/net_last.pth' --resume-trans '/home/epinyoan/git/MaskText2Motion/T2M-BD/output/t2m/2023-10-12-10-11-15_HML3D_45_crsAtt1lyr_40breset_WRONG_THIS_20BRESET/net_last.pth' --text 'the person crouches and walks forward.' --length 156

    mmm = MMM(args)
    pred_pose = mmm([args.text], torch.tensor([args.length]), rand_pos=False)

    std = np.load('./exit/t2m-std.npy')
    mean = np.load('./exit/t2m-mean.npy')
    file_name = '_'.join(args.text.split(' '))+'_'+str(args.length)
    visualize_2motions(pred_pose[0].detach().cpu().numpy(), std, mean, 't2m', args.length, save_path='./output/'+file_name+'.html')