File size: 14,236 Bytes
eeaa83d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import torch
import clip
import models.vqvae as vqvae
from models.vqvae_sep import VQVAE_SEP
import models.t2m_trans as trans
import models.t2m_trans_uplow as trans_uplow
import numpy as np
from exit.utils import visualize_2motions
import options.option_transformer as option_trans
##### ---- CLIP ---- #####
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cpu'), jit=False) # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
# https://github.com/openai/CLIP/issues/111
class TextCLIP(torch.nn.Module):
def __init__(self, model) :
super(TextCLIP, self).__init__()
self.model = model
def forward(self,text):
with torch.no_grad():
word_emb = self.model.token_embedding(text).type(self.model.dtype)
word_emb = word_emb + self.model.positional_embedding.type(self.model.dtype)
word_emb = word_emb.permute(1, 0, 2) # NLD -> LND
word_emb = self.model.transformer(word_emb)
word_emb = self.model.ln_final(word_emb).permute(1, 0, 2).float()
enctxt = self.model.encode_text(text).float()
return enctxt, word_emb
clip_model = TextCLIP(clip_model)
def get_vqvae(args, is_upper_edit):
if not is_upper_edit:
return vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
else:
return VQVAE_SEP(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate,
moment={'mean': torch.from_numpy(args.mean).float(),
'std': torch.from_numpy(args.std).float()},
sep_decoder=True)
def get_maskdecoder(args, vqvae, is_upper_edit):
tranformer = trans if not is_upper_edit else trans_uplow
return tranformer.Text2Motion_Transformer(vqvae,
num_vq=args.nb_code,
embed_dim=args.embed_dim_gpt,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=args.num_layers,
num_local_layer=args.num_local_layer,
n_head=args.n_head_gpt,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
class MMM(torch.nn.Module):
def __init__(self, args=None, is_upper_edit=False):
super().__init__()
self.is_upper_edit = is_upper_edit
args.dataname = args.dataset_name = 't2m'
self.vqvae = get_vqvae(args, is_upper_edit)
ckpt = torch.load(args.resume_pth, map_location='cpu')
self.vqvae.load_state_dict(ckpt['net'], strict=True)
if is_upper_edit:
class VQVAE_WRAPPER(torch.nn.Module):
def __init__(self, vqvae) :
super().__init__()
self.vqvae = vqvae
def forward(self, *args, **kwargs):
return self.vqvae(*args, **kwargs)
self.vqvae = VQVAE_WRAPPER(self.vqvae)
self.vqvae.eval()
self.vqvae
self.maskdecoder = get_maskdecoder(args, self.vqvae, is_upper_edit)
ckpt = torch.load(args.resume_trans, map_location='cpu')
self.maskdecoder.load_state_dict(ckpt['trans'], strict=True)
self.maskdecoder.train()
self.maskdecoder
def forward(self, text, lengths=-1, rand_pos=True):
b = len(text)
feat_clip_text = clip.tokenize(text, truncate=True)
feat_clip_text, word_emb = clip_model(feat_clip_text)
index_motion = self.maskdecoder(feat_clip_text, word_emb, type="sample", m_length=lengths, rand_pos=rand_pos, if_test=False)
m_token_length = torch.ceil((lengths)/4).int()
pred_pose_all = torch.zeros((b, 196, 263))
for k in range(b):
pred_pose = self.vqvae(index_motion[k:k+1, :m_token_length[k]], type='decode')
pred_pose_all[k:k+1, :int(lengths[k].item())] = pred_pose
return pred_pose_all
def inbetween_eval(self, base_pose, m_length, start_f, end_f, inbetween_text):
bs, seq = base_pose.shape[:2]
tokens = -1*torch.ones((bs, 50), dtype=torch.long)
m_token_length = torch.ceil((m_length)/4).int()
start_t = torch.round((start_f)/4).int()
end_t = torch.round((end_f)/4).int()
for k in range(bs):
index_motion = self.vqvae(base_pose[k:k+1, :m_length[k]], type='encode')
tokens[k, :start_t[k]] = index_motion[0][:start_t[k]]
tokens[k, end_t[k]:m_token_length[k]] = index_motion[0][end_t[k]:m_token_length[k]]
text = clip.tokenize(inbetween_text, truncate=True)
feat_clip_text, word_emb_clip = clip_model(text)
mask_id = self.maskdecoder.num_vq + 2
tokens[tokens==-1] = mask_id
inpaint_index = self.maskdecoder(feat_clip_text, word_emb_clip, type="sample", m_length=m_length, token_cond=tokens)
pred_pose_eval = torch.zeros((bs, seq, base_pose.shape[-1]))
for k in range(bs):
pred_pose = self.vqvae(inpaint_index[k:k+1, :m_token_length[k]], type='decode')
pred_pose_eval[k:k+1, :int(m_length[k].item())] = pred_pose
return pred_pose_eval
def long_range(self, text, lengths, num_transition_token=2, output='concat', index_motion=None):
b = len(text)
feat_clip_text = clip.tokenize(text, truncate=True)
feat_clip_text, word_emb = clip_model(feat_clip_text)
if index_motion is None:
index_motion = self.maskdecoder(feat_clip_text, word_emb, type="sample", m_length=lengths, rand_pos=False)
m_token_length = torch.ceil((lengths)/4).int()
if output == 'eval':
frame_length = m_token_length * 4
m_token_length = m_token_length.clone()
m_token_length = m_token_length - 2*num_transition_token
m_token_length[[0,-1]] += num_transition_token # first and last have transition only half
half_token_length = (m_token_length/2).int()
idx_full_len = half_token_length >= 24
half_token_length[idx_full_len] = half_token_length[idx_full_len] - 1
mask_id = self.maskdecoder.num_vq + 2
tokens = -1*torch.ones((b-1, 50), dtype=torch.long)
transition_train_length = []
for i in range(b-1):
if output == 'concat':
i_index_motion = index_motion[i]
i1_index_motion = index_motion[i+1]
if output == 'eval':
if i == 0:
i_index_motion = index_motion[i, :m_token_length[i]]
else:
i_index_motion = index_motion[i, num_transition_token:m_token_length[i] + num_transition_token]
if i == b-1:
i1_index_motion = index_motion[i+1, :m_token_length[i+1]]
else:
i1_index_motion = index_motion[i+1,
num_transition_token:m_token_length[i+1] + num_transition_token]
left_end = half_token_length[i]
right_start = left_end + num_transition_token
end = right_start + half_token_length[i+1]
tokens[i, :left_end] = i_index_motion[m_token_length[i]-left_end: m_token_length[i]]
tokens[i, left_end:right_start] = mask_id
tokens[i, right_start:end] = i1_index_motion[:half_token_length[i+1]]
transition_train_length.append(end)
transition_train_length = torch.tensor(transition_train_length).to(index_motion.device)
text = clip.tokenize(text[:-1], truncate=True)
feat_clip_text, word_emb_clip = clip_model(text)
inpaint_index = self.maskdecoder(feat_clip_text, word_emb_clip, type="sample", m_length=transition_train_length*4, token_cond=tokens, max_steps=1)
if output == 'concat':
all_tokens = []
for i in range(b-1):
all_tokens.append(index_motion[i, :m_token_length[i]])
all_tokens.append(inpaint_index[i, tokens[i] == mask_id])
all_tokens.append(index_motion[-1, :m_token_length[-1]])
all_tokens = torch.cat(all_tokens).unsqueeze(0)
pred_pose = self.vqvae(all_tokens, type='decode')
return pred_pose
elif output == 'eval':
all_tokens = []
for i in range(b):
motion_token = index_motion[i, :m_token_length[i]]
if i == 0:
first_current_trans_tok = inpaint_index[i, tokens[i] == mask_id]
all_tokens.append(motion_token)
all_tokens.append(first_current_trans_tok)
else:
if i < b-1:
first_current_trans_tok = inpaint_index[i, tokens[i] == mask_id]
all_tokens.append(motion_token)
all_tokens.append(first_current_trans_tok)
else:
all_tokens.append(motion_token)
all_tokens = torch.cat(all_tokens)
pred_pose_concat = self.vqvae(all_tokens.unsqueeze(0), type='decode')
trans_frame = num_transition_token*4
pred_pose = torch.zeros((b, 196, 263))
current_point = 0
for i in range(b):
if i == 0:
start_f = torch.tensor(0)
end_f = frame_length[i]
else:
start_f = current_point - trans_frame
end_f = start_f + frame_length[i]
current_point = end_f
pred_pose[i, :frame_length[i]] = pred_pose_concat[0, start_f: end_f]
return pred_pose
def upper_edit(self, pose, m_length, upper_text, lower_mask=None):
pose = pose.clone().float() # bs, nb_joints, joints_dim, seq_len
m_tokens_len = torch.ceil((m_length)/4)
bs, seq = pose.shape[:2]
max_motion_length = int(seq/4) + 1
mot_end_idx = self.vqvae.vqvae.num_code
mot_pad_idx = self.vqvae.vqvae.num_code + 1
mask_id = self.vqvae.vqvae.num_code + 2
target_lower = []
for k in range(bs):
target = self.vqvae(pose[k:k+1, :m_length[k]], type='encode')
if m_tokens_len[k]+1 < max_motion_length:
target = torch.cat([target,
torch.ones((1, 1, 2), dtype=int, device=target.device) * mot_end_idx,
torch.ones((1, max_motion_length-1-m_tokens_len[k].int().item(), 2), dtype=int, device=target.device) * mot_pad_idx], axis=1)
else:
target = torch.cat([target,
torch.ones((1, 1, 2), dtype=int, device=target.device) * mot_end_idx], axis=1)
target_lower.append(target[..., 1])
target_lower = torch.cat(target_lower, axis=0)
### lower mask ###
if lower_mask is not None:
lower_mask = torch.cat([lower_mask, torch.zeros(bs, 1, dtype=int)], dim=1).bool()
target_lower_masked = target_lower.clone()
target_lower_masked[lower_mask] = mask_id
select_end = target_lower == mot_end_idx
target_lower_masked[select_end] = target_lower[select_end]
else:
target_lower_masked = target_lower
##################
pred_len = m_length
pred_tok_len = m_tokens_len
pred_pose_eval = torch.zeros((bs, seq, pose.shape[-1]))
# __upper_text__ = ['A man punches with right hand.'] * 32
text = clip.tokenize(upper_text, truncate=True)
feat_clip_text, word_emb_clip = clip_model(text)
# index_motion = trans_encoder(feat_clip_text, idx_lower=target_lower_masked, word_emb=word_emb_clip, type="sample", m_length=pred_len, rand_pos=True, CFG=-1)
index_motion = self.maskdecoder(feat_clip_text, target_lower_masked, word_emb_clip, type="sample", m_length=pred_len, rand_pos=True)
for i in range(bs):
all_tokens = torch.cat([
index_motion[i:i+1, :int(pred_tok_len[i].item()), None],
target_lower[i:i+1, :int(pred_tok_len[i].item()), None]
], axis=-1)
pred_pose = self.vqvae(all_tokens, type='decode')
pred_pose_eval[i:i+1, :int(pred_len[i].item())] = pred_pose
return pred_pose_eval
if __name__ == '__main__':
args = option_trans.get_args_parser()
# python generate.py --resume-pth '/home/epinyoan/git/MaskText2Motion/T2M-BD/output/vq/2023-07-19-04-17-17_12_VQVAE_20batchResetNRandom_8192_32/net_last.pth' --resume-trans '/home/epinyoan/git/MaskText2Motion/T2M-BD/output/t2m/2023-10-12-10-11-15_HML3D_45_crsAtt1lyr_40breset_WRONG_THIS_20BRESET/net_last.pth' --text 'the person crouches and walks forward.' --length 156
mmm = MMM(args)
pred_pose = mmm([args.text], torch.tensor([args.length]), rand_pos=False)
std = np.load('./exit/t2m-std.npy')
mean = np.load('./exit/t2m-mean.npy')
file_name = '_'.join(args.text.split(' '))+'_'+str(args.length)
visualize_2motions(pred_pose[0].detach().cpu().numpy(), std, mean, 't2m', args.length, save_path='./output/'+file_name+'.html')
|