File size: 5,505 Bytes
eeaa83d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch.nn as nn
from models.encdec import Encoder, Decoder
from models.quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset
from models.t2m_trans import Decoder_Transformer, Encoder_Transformer
from exit.utils import generate_src_mask

class VQVAE_251(nn.Module):
    def __init__(self,
                 args,
                 nb_code=1024,
                 code_dim=512,
                 output_emb_width=512,
                 down_t=3,
                 stride_t=2,
                 width=512,
                 depth=3,
                 dilation_growth_rate=3,
                 activation='relu',
                 norm=None):
        
        super().__init__()
        self.code_dim = code_dim
        self.num_code = nb_code
        self.quant = args.quantizer
        output_dim = 251 if args.dataname == 'kit' else 263
        self.encoder = Encoder(output_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
        
        # Transformer Encoder
        # self.encoder = Encoder_Transformer(
        #     input_feats=output_dim,
        #     embed_dim=512, # 1024
        #     output_dim=512,
        #     block_size=4,
        #     num_layers=6,
        #     n_head=16
        # )

         # Transformer Encoder 4 frames
        # from exit.motiontransformer import MotionTransformerEncoder
        # in_feature = 251 if args.dataname == 'kit' else 263
        # self.encoder2 = MotionTransformerEncoder(in_feature, args.code_dim, num_frames=4, num_layers=2)

        self.decoder = Decoder(output_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)        
        # self.decoder = Decoder_Transformer(
        #     code_dim=512,
        #     embed_dim=512, # 1024
        #     output_dim=output_dim,
        #     block_size=49,
        #     num_layers=6,
        #     n_head=8
        # )
        if args.quantizer == "ema_reset":
            self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
        elif args.quantizer == "orig":
            self.quantizer = Quantizer(nb_code, code_dim, 1.0)
        elif args.quantizer == "ema":
            self.quantizer = QuantizeEMA(nb_code, code_dim, args)
        elif args.quantizer == "reset":
            self.quantizer = QuantizeReset(nb_code, code_dim, args)


    def preprocess(self, x):
        # (bs, T, Jx3) -> (bs, Jx3, T)
        x = x.permute(0,2,1).float()
        return x


    def postprocess(self, x):
        # (bs, Jx3, T) ->  (bs, T, Jx3)
        x = x.permute(0,2,1)
        return x


    def encode(self, x):
        N, T, _ = x.shape
        x_in = self.preprocess(x)
        x_encoder = self.encoder(x_in)
        x_encoder = self.postprocess(x_encoder)
        x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1])  # (NT, C)
        code_idx = self.quantizer.quantize(x_encoder)
        code_idx = code_idx.view(N, -1)
        return code_idx


    def forward(self, x):
        
        x_in = self.preprocess(x)
        # Encode
        # _x_in = x_in.reshape( int(x_in.shape[0]*4), x_in.shape[1], 16)
        # x_encoder = self.encoder(_x_in)
        # x_encoder = x_encoder.reshape(x_in.shape[0], -1, int(x_in.shape[2]/4))

        # [Transformer Encoder]
        # _x_in = x_in.reshape( int(x_in.shape[0]*x_in.shape[2]/4), x_in.shape[1], 4)
        # _x_in = _x_in.permute(0,2,1)
        # x_encoder = self.encoder2(_x_in)
        # x_encoder = x_encoder.permute(0,2,1)
        # x_encoder = x_encoder.reshape(x_in.shape[0], -1, int(x_in.shape[2]/4))

        x_encoder = self.encoder(x_in)
        
        ## quantization
        x_quantized, loss, perplexity  = self.quantizer(x_encoder)

        ## decoder
        x_decoder = self.decoder(x_quantized)
        x_out = self.postprocess(x_decoder)
        return x_out, loss, perplexity


    def forward_decoder(self, x):
        # x = x.clone()
        # pad_mask = x >= self.code_dim
        # x[pad_mask] = 0

        x_d = self.quantizer.dequantize(x)
        x_d = x_d.permute(0, 2, 1).contiguous()

        # pad_mask = pad_mask.unsqueeze(1)
        # x_d = x_d * ~pad_mask
        
        # decoder
        x_decoder = self.decoder(x_d)
        x_out = self.postprocess(x_decoder)
        return x_out



class HumanVQVAE(nn.Module):
    def __init__(self,
                 args,
                 nb_code=512,
                 code_dim=512,
                 output_emb_width=512,
                 down_t=3,
                 stride_t=2,
                 width=512,
                 depth=3,
                 dilation_growth_rate=3,
                 activation='relu',
                 norm=None):
        
        super().__init__()
        
        self.nb_joints = 21 if args.dataname == 'kit' else 22
        self.vqvae = VQVAE_251(args, nb_code, code_dim, code_dim, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)

    def forward(self, x, type='full'):
        '''type=[full, encode, decode]'''
        if type=='full':
            x_out, loss, perplexity = self.vqvae(x)
            return x_out, loss, perplexity
        elif type=='encode':
            b, t, c = x.size()
            quants = self.vqvae.encode(x) # (N, T)
            return quants
        elif type=='decode':
            x_out = self.vqvae.forward_decoder(x)
            return x_out
        else:
            raise ValueError(f'Unknown "{type}" type')