File size: 28,084 Bytes
eeaa83d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.distributions import Categorical
import models.pos_encoding as pos_encoding
from exit.utils import cosine_schedule, uniform, top_k, gumbel_sample, top_p
from tqdm import tqdm
from einops import rearrange, repeat
from exit.utils import get_model, generate_src_mask
class PatchUpSampling(nn.Module):
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.up_sampling = nn.Linear(dim, 4 * dim, bias=False)
self.norm = norm_layer(dim)
def forward(self, x):
"""
x: B, F, C
"""
x = self.norm(x)
x = self.up_sampling(x)
x0 = x[:, :, 0::4]
x1 = x[:, :, 1::4]
x2 = x[:, :, 2::4]
x3 = x[:, :, 3::4]
x = torch.cat([x0, x1, x2, x3], 1)
return x
class Decoder_Transformer(nn.Module):
def __init__(self,
code_dim=1024,
embed_dim=512,
output_dim=263,
block_size=16,
num_layers=2,
n_head=8,
drop_out_rate=0.1,
fc_rate=4):
super().__init__()
self.joint_embed = nn.Linear(code_dim, embed_dim)
self.drop = nn.Dropout(drop_out_rate)
# transformer block
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
self.up_sample = PatchUpSampling(embed_dim)
self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
self.head = nn.Sequential(nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, output_dim))
self.block_size = block_size
self.n_head = n_head
self.apply(self._init_weights)
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, token_embeddings):
# token_embeddings = self.tok_emb(idx)
# B, T = src_mask.shape
# src_mask = src_mask.view(B, 1, 1, T).repeat(1, self.n_head, T, 1)
token_embeddings = token_embeddings.permute(0, 2, 1)
token_embeddings = self.joint_embed(token_embeddings)
x = self.pos_embed(token_embeddings)
# block_step_len = int(len(self.blocks)/3)
# mask_temp = get_attn_mask(_range=3, _max=x.shape[1]).to(src_mask.device)
# eye = torch.eye(x.shape[1]).unsqueeze(0).unsqueeze(0).to(src_mask.device).bool()
# src_mask = src_mask*mask_temp + eye
for block in self.blocks:
x = block(x)
x = self.up_sample(x)
# mask_2 = mask_1.repeat(1, 1, 2, 2)
# for block in self.blocks[block_step_len:2*block_step_len]:
# x = block(x, mask_2)
# x = self.up_sample(x)
# mask_3 = mask_2.repeat(1, 1, 2, 2)
# for block in self.blocks[2*block_step_len:]:
# x = block(x, mask_3)
x = self.head(x).permute(0, 2, 1)
return x
# https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py#L342C9-L343C33
class PatchMerging(nn.Module):
def __init__(self, input_feats, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * input_feats, dim, bias=False)
self.norm = norm_layer(4 * input_feats)
def forward(self, x):
"""
x: B, F, C
"""
x0 = x[:, 0::4, :] # B F/2 C
x1 = x[:, 1::4, :]
x2 = x[:, 2::4, :] # B F/2 C
x3 = x[:, 3::4, :]
x = torch.cat([x0, x1, x2, x3], -1) # B F/2 2*C
x = self.norm(x)
x = self.reduction(x)
return x
class Encoder_Transformer(nn.Module):
def __init__(self,
input_feats=1024,
embed_dim=512,
output_dim=263,
block_size=16,
num_layers=2,
n_head=8,
drop_out_rate=0.1,
fc_rate=4):
super().__init__()
self.joint_embed = nn.Linear(input_feats, embed_dim)
self.drop = nn.Dropout(drop_out_rate)
# transformer block
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
# self.patch_merging1 = PatchMerging(input_feats, embed_dim)
# self.patch_merging2 = PatchMerging(embed_dim)
self.weighted_mean_norm = nn.LayerNorm(embed_dim)
self.weighted_mean = torch.nn.Conv1d(in_channels=block_size, out_channels=1, kernel_size=1)
self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
self.head = nn.Sequential(nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, output_dim))
self.block_size = block_size
self.n_head = n_head
self.apply(self._init_weights)
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, joints):
# B, T = src_mask.shape
# src_mask = src_mask.view(B, 1, 1, T).repeat(1, self.n_head, T, 1)
joints = joints.permute(0,2,1)
# token_embeddings = self.joint_embed(joints)
block_step_len = int(len(self.blocks)/3)
x = self.joint_embed(joints)
token_len = int(x.shape[1]/self.block_size)
_original_shape = list(x.shape)
x = x.view(x.shape[0]*token_len, self.block_size, -1)
# mask_temp = get_attn_mask(_range=3, _max=x.shape[1]).to(src_mask.device)
# eye = torch.eye(x.shape[1]).unsqueeze(0).unsqueeze(0).to(src_mask.device).bool()
# src_mask = src_mask*mask_temp + eye
x = self.pos_embed(x)
for block in self.blocks:
x = block(x)
x = self.weighted_mean_norm(x)
x = self.weighted_mean(x)
_original_shape[1] = int(_original_shape[1] / self.block_size)
x = x.view(*_original_shape)
# for block in self.blocks[block_step_len:2*block_step_len]:
# x = block(x)
# x = self.patch_merging2(x)
# for block in self.blocks[2*block_step_len:]:
# x = block(x)
x = self.head(x).permute(0, 2, 1)
return x
class Text2Motion_Transformer(nn.Module):
def __init__(self,
vqvae,
num_vq=1024,
embed_dim=512,
clip_dim=512,
block_size=16,
num_layers=2,
num_local_layer=0,
n_head=8,
drop_out_rate=0.1,
fc_rate=4):
super().__init__()
self.n_head = n_head
self.trans_base = CrossCondTransBase(vqvae, num_vq, embed_dim, clip_dim, block_size, num_layers, num_local_layer, n_head, drop_out_rate, fc_rate)
self.trans_head = CrossCondTransHead(num_vq, embed_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
self.block_size = block_size
self.num_vq = num_vq
def get_block_size(self):
return self.block_size
def forward(self, *args, type='forward', **kwargs):
'''type=[forward, sample]'''
if type=='forward':
return self.forward_function(*args, **kwargs)
elif type=='sample':
return self.sample(*args, **kwargs)
elif type=='inpaint':
return self.inpaint(*args, **kwargs)
else:
raise ValueError(f'Unknown "{type}" type')
def get_attn_mask(self, src_mask, att_txt=None, txt_mark=None):
if att_txt is None:
att_txt = torch.tensor([[True]]*src_mask.shape[0]).to(src_mask.device)
src_mask = torch.cat([att_txt, src_mask], dim=1)
B, T = src_mask.shape
src_mask = src_mask.view(B, 1, 1, T).repeat(1, self.n_head, T, 1)
if txt_mark is not None:
att_txt_txt = torch.tensor([[True]]*txt_mark.shape[0]).to(txt_mark.device)
txt_mark = torch.cat([att_txt_txt, txt_mark], dim=1)
src_mask[:, :, :, 0] = txt_mark.view(B, 1, T).repeat(1, self.n_head, 1)
return src_mask
def forward_function(self, idx_upper, idx_lower, clip_feature, src_mask=None, att_txt=None, txt_mark=None, word_emb=None):
# MLD:
# if att_txt is None:
# att_txt = torch.tensor([[True]]*src_mask.shape[0]).to(src_mask.device)
# src_mask = torch.cat([att_txt, src_mask], dim=1)
# logits = self.skip_trans(idxs, clip_feature, src_mask)
# T2M-BD
if src_mask is not None:
src_mask = self.get_attn_mask(src_mask, att_txt, txt_mark)
feat = self.trans_base(idx_upper, idx_lower, clip_feature, src_mask, word_emb)
logits = self.trans_head(feat, src_mask)
return logits
def sample(self, clip_feature, idx_lower, word_emb, m_length=None, if_test=False, rand_pos=False, CFG=-1):
max_steps = 20
max_length = 49
batch_size = clip_feature.shape[0]
mask_id = self.num_vq + 2
pad_id = self.num_vq + 1
end_id = self.num_vq
shape = (batch_size, self.block_size - 1)
topk_filter_thres = .9
starting_temperature = 1.0
scores = torch.ones(shape, dtype = torch.float32, device = clip_feature.device)
m_tokens_len = torch.ceil((m_length)/4)
src_token_mask = generate_src_mask(self.block_size-1, m_tokens_len+1)
src_token_mask_noend = generate_src_mask(self.block_size-1, m_tokens_len)
ids = torch.full(shape, mask_id, dtype = torch.long, device = clip_feature.device)
# [TODO] confirm that these 2 lines are not neccessary (repeated below and maybe don't need them at all)
ids[~src_token_mask] = pad_id # [INFO] replace with pad id
ids.scatter_(-1, m_tokens_len[..., None].long(), end_id) # [INFO] replace with end id
### PlayGround ####
# score high = mask
# m_tokens_len = torch.ceil((m_length)/4)
# src_token_mask = generate_src_mask(self.block_size-1, m_tokens_len+1)
# # mock
# timestep = torch.tensor(.5)
# rand_mask_prob = cosine_schedule(timestep)
# scores = torch.arange(self.block_size - 1).repeat(batch_size, 1).cuda()
# scores[1] = torch.flip(torch.arange(self.block_size - 1), dims=(0,))
# # iteration
# num_token_masked = (rand_mask_prob * m_tokens_len).int().clip(min=1)
# scores[~src_token_mask] = -1e5
# masked_indices = scores.argsort(dim=-1, descending=True) # This is flipped the order. The highest score is the first in order.
# masked_indices = masked_indices < num_token_masked.unsqueeze(-1) # So it can filter out by "< num_token_masked". We want to filter the high score as a mask
# ids[masked_indices] = mask_id
#########################
temp = []
sample_max_steps = torch.round(max_steps/max_length*m_tokens_len) + 1e-8
for step in range(max_steps):
timestep = torch.clip(step/(sample_max_steps), max=1)
rand_mask_prob = cosine_schedule(timestep) # timestep #
num_token_masked = (rand_mask_prob * m_tokens_len).long().clip(min=1)
# [INFO] rm no motion frames
scores[~src_token_mask_noend] = 0
scores = scores/scores.sum(-1)[:, None] # normalize only unmasked token
# if rand_pos:
# sorted_score_indices = scores.multinomial(scores.shape[-1], replacement=False) # stocastic
# else:
sorted, sorted_score_indices = scores.sort(descending=True) # deterministic
ids[~src_token_mask] = pad_id # [INFO] replace with pad id
ids.scatter_(-1, m_tokens_len[..., None].long(), end_id) # [INFO] replace with end id
## [INFO] Replace "mask_id" to "ids" that have highest "num_token_masked" "scores"
select_masked_indices = generate_src_mask(sorted_score_indices.shape[1], num_token_masked)
# [INFO] repeat last_id to make it scatter_ the existing last ids.
last_index = sorted_score_indices.gather(-1, num_token_masked.unsqueeze(-1)-1)
sorted_score_indices = sorted_score_indices * select_masked_indices + (last_index*~select_masked_indices)
ids.scatter_(-1, sorted_score_indices, mask_id)
# if torch.isclose(timestep, torch.tensor(0.7647), atol=.01):
# print('masked_indices:', ids[0], src_token_mask[0])
if CFG!=-1:
# print('ids:', ids.shape, clip_feature.shape, src_token_mask.shape)
_ids = ids.repeat(2,1)
_clip_feature = clip_feature.repeat(2,1)
_src_token_mask = src_token_mask.repeat(2,1)
att_txt = torch.cat( (torch.ones((batch_size,1), dtype=torch.bool),
torch.zeros((batch_size,1), dtype=torch.bool) )).to(_ids.device)
logits = self.forward(_ids, idx_lower, _clip_feature, _src_token_mask, att_txt)[:,1:]
logits_textcond = logits[:batch_size]
logits_uncond = logits[batch_size:]
# logits = (1-CFG)*logits_textcond + CFG*logits_uncond
logits = (1+CFG)*logits_textcond - CFG*logits_uncond
else:
logits = self.forward(ids, idx_lower, clip_feature, src_token_mask, word_emb=word_emb)[:,1:]
filtered_logits = logits #top_p(logits, .5) # #top_k(logits, topk_filter_thres)
if rand_pos:
temperature = 1 #starting_temperature * (steps_until_x0 / timesteps) # temperature is annealed
else:
temperature = 0 #starting_temperature * (steps_until_x0 / timesteps) # temperature is annealed
# [INFO] if temperature==0: is equal to argmax (filtered_logits.argmax(dim = -1))
# pred_ids = filtered_logits.argmax(dim = -1)
pred_ids = gumbel_sample(filtered_logits, temperature = temperature, dim = -1)
is_mask = ids == mask_id
temp.append(is_mask[:1])
# mid = is_mask[0][:m_tokens_len[0].int()]
# mid = mid.nonzero(as_tuple=True)[0]
# print(is_mask[0].sum(), m_tokens_len[0])
ids = torch.where(
is_mask,
pred_ids,
ids
)
# if timestep == 1.:
# print(probs_without_temperature.shape)
probs_without_temperature = logits.softmax(dim = -1)
scores = 1 - probs_without_temperature.gather(-1, pred_ids[..., None])
scores = rearrange(scores, '... 1 -> ...')
scores = scores.masked_fill(~is_mask, 0)
if if_test:
return ids, temp
return ids
def inpaint(self, first_tokens, last_tokens, clip_feature=None, inpaint_len=2, rand_pos=False):
# support only one sample
assert first_tokens.shape[0] == 1
assert last_tokens.shape[0] == 1
max_steps = 20
max_length = 49
batch_size = first_tokens.shape[0]
mask_id = self.num_vq + 2
pad_id = self.num_vq + 1
end_id = self.num_vq
shape = (batch_size, self.block_size - 1)
scores = torch.ones(shape, dtype = torch.float32, device = first_tokens.device)
# force add first / last tokens
first_partition_pos_idx = first_tokens.shape[1]
second_partition_pos_idx = first_partition_pos_idx + inpaint_len
end_pos_idx = second_partition_pos_idx + last_tokens.shape[1]
m_tokens_len = torch.ones(batch_size, device = first_tokens.device)*end_pos_idx
src_token_mask = generate_src_mask(self.block_size-1, m_tokens_len+1)
src_token_mask_noend = generate_src_mask(self.block_size-1, m_tokens_len)
ids = torch.full(shape, mask_id, dtype = torch.long, device = first_tokens.device)
ids[:, :first_partition_pos_idx] = first_tokens
ids[:, second_partition_pos_idx:end_pos_idx] = last_tokens
src_token_mask_noend[:, :first_partition_pos_idx] = False
src_token_mask_noend[:, second_partition_pos_idx:end_pos_idx] = False
# [TODO] confirm that these 2 lines are not neccessary (repeated below and maybe don't need them at all)
ids[~src_token_mask] = pad_id # [INFO] replace with pad id
ids.scatter_(-1, m_tokens_len[..., None].long(), end_id) # [INFO] replace with end id
temp = []
sample_max_steps = torch.round(max_steps/max_length*m_tokens_len) + 1e-8
if clip_feature is None:
clip_feature = torch.zeros(1, 512).to(first_tokens.device)
att_txt = torch.zeros((batch_size,1), dtype=torch.bool, device = first_tokens.device)
else:
att_txt = torch.ones((batch_size,1), dtype=torch.bool, device = first_tokens.device)
for step in range(max_steps):
timestep = torch.clip(step/(sample_max_steps), max=1)
rand_mask_prob = cosine_schedule(timestep) # timestep #
num_token_masked = (rand_mask_prob * m_tokens_len).long().clip(min=1)
# [INFO] rm no motion frames
scores[~src_token_mask_noend] = 0
# [INFO] rm begin and end frames
scores[:, :first_partition_pos_idx] = 0
scores[:, second_partition_pos_idx:end_pos_idx] = 0
scores = scores/scores.sum(-1)[:, None] # normalize only unmasked token
sorted, sorted_score_indices = scores.sort(descending=True) # deterministic
ids[~src_token_mask] = pad_id # [INFO] replace with pad id
ids.scatter_(-1, m_tokens_len[..., None].long(), end_id) # [INFO] replace with end id
## [INFO] Replace "mask_id" to "ids" that have highest "num_token_masked" "scores"
select_masked_indices = generate_src_mask(sorted_score_indices.shape[1], num_token_masked)
# [INFO] repeat last_id to make it scatter_ the existing last ids.
last_index = sorted_score_indices.gather(-1, num_token_masked.unsqueeze(-1)-1)
sorted_score_indices = sorted_score_indices * select_masked_indices + (last_index*~select_masked_indices)
ids.scatter_(-1, sorted_score_indices, mask_id)
# [TODO] force replace begin/end tokens b/c the num mask will be more than actual inpainting frames
ids[:, :first_partition_pos_idx] = first_tokens
ids[:, second_partition_pos_idx:end_pos_idx] = last_tokens
logits = self.forward(ids, clip_feature, src_token_mask, att_txt)[:,1:]
filtered_logits = logits #top_k(logits, topk_filter_thres)
if rand_pos:
temperature = 1 #starting_temperature * (steps_until_x0 / timesteps) # temperature is annealed
else:
temperature = 0 #starting_temperature * (steps_until_x0 / timesteps) # temperature is annealed
# [INFO] if temperature==0: is equal to argmax (filtered_logits.argmax(dim = -1))
# pred_ids = filtered_logits.argmax(dim = -1)
pred_ids = gumbel_sample(filtered_logits, temperature = temperature, dim = -1)
is_mask = ids == mask_id
temp.append(is_mask[:1])
ids = torch.where(
is_mask,
pred_ids,
ids
)
probs_without_temperature = logits.softmax(dim = -1)
scores = 1 - probs_without_temperature.gather(-1, pred_ids[..., None])
scores = rearrange(scores, '... 1 -> ...')
scores = scores.masked_fill(~is_mask, 0)
return ids
class Attention(nn.Module):
def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1):
super().__init__()
assert embed_dim % 8 == 0
# key, query, value projections for all heads
self.key = nn.Linear(embed_dim, embed_dim)
self.query = nn.Linear(embed_dim, embed_dim)
self.value = nn.Linear(embed_dim, embed_dim)
self.attn_drop = nn.Dropout(drop_out_rate)
self.resid_drop = nn.Dropout(drop_out_rate)
self.proj = nn.Linear(embed_dim, embed_dim)
self.n_head = n_head
def forward(self, x, src_mask):
B, T, C = x.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
if src_mask is not None:
att[~src_mask] = float('-inf')
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1, fc_rate=4):
super().__init__()
self.ln1 = nn.LayerNorm(embed_dim)
self.ln2 = nn.LayerNorm(embed_dim)
self.attn = Attention(embed_dim, block_size, n_head, drop_out_rate)
self.mlp = nn.Sequential(
nn.Linear(embed_dim, fc_rate * embed_dim),
nn.GELU(),
nn.Linear(fc_rate * embed_dim, embed_dim),
nn.Dropout(drop_out_rate),
)
def forward(self, x, src_mask=None):
x = x + self.attn(self.ln1(x), src_mask)
x = x + self.mlp(self.ln2(x))
return x
from models.t2m_trans import Block_crossatt
class CrossCondTransBase(nn.Module):
def __init__(self,
vqvae,
num_vq=1024,
embed_dim=512,
clip_dim=512,
block_size=16,
num_layers=2,
num_local_layer = 1,
n_head=8,
drop_out_rate=0.1,
fc_rate=4):
super().__init__()
self.vqvae = vqvae
# self.tok_emb = nn.Embedding(num_vq + 3, embed_dim).requires_grad_(False)
self.learn_tok_emb = nn.Embedding(3, int(self.vqvae.vqvae.code_dim/2))# [INFO] 3 = [end_id, blank_id, mask_id]
self.to_emb = nn.Linear(self.vqvae.vqvae.code_dim, embed_dim)
self.cond_emb = nn.Linear(clip_dim, embed_dim)
self.pos_embedding = nn.Embedding(block_size, embed_dim)
self.drop = nn.Dropout(drop_out_rate)
# transformer block
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers-num_local_layer)])
self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
self.num_local_layer = num_local_layer
if num_local_layer > 0:
self.word_emb = nn.Linear(clip_dim, embed_dim)
self.cross_att = nn.Sequential(*[Block_crossatt(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_local_layer)])
self.block_size = block_size
self.apply(self._init_weights)
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, idx_upper, idx_lower, clip_feature, src_mask, word_emb):
if len(idx_upper) == 0:
token_embeddings = self.cond_emb(clip_feature).unsqueeze(1)
else:
b, t = idx_upper.size()
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
# forward the Trans model
learn_idx_upper = idx_upper>=self.vqvae.vqvae.num_code
learn_idx_lower = idx_lower>=self.vqvae.vqvae.num_code
code_dim = self.vqvae.vqvae.code_dim
token_embeddings = torch.empty((*idx_upper.shape, code_dim), device=idx_upper.device)
token_embeddings[..., :int(code_dim/2)][~learn_idx_upper] = self.vqvae.vqvae.quantizer_upper.dequantize(idx_upper[~learn_idx_upper]).requires_grad_(False)
token_embeddings[..., :int(code_dim/2)][learn_idx_upper] = self.learn_tok_emb(idx_upper[learn_idx_upper]-self.vqvae.vqvae.num_code)
token_embeddings[..., int(code_dim/2):][~learn_idx_lower] = self.vqvae.vqvae.quantizer_lower.dequantize(idx_lower[~learn_idx_lower]).requires_grad_(False)
token_embeddings[..., int(code_dim/2):][learn_idx_lower] = self.learn_tok_emb(idx_lower[learn_idx_lower]-self.vqvae.vqvae.num_code)
token_embeddings = self.to_emb(token_embeddings)
if self.num_local_layer > 0:
word_emb = self.word_emb(word_emb)
token_embeddings = self.pos_embed(token_embeddings)
for module in self.cross_att:
token_embeddings = module(token_embeddings, word_emb)
token_embeddings = torch.cat([self.cond_emb(clip_feature).unsqueeze(1), token_embeddings], dim=1)
x = self.pos_embed(token_embeddings)
for block in self.blocks:
x = block(x, src_mask)
return x
class CrossCondTransHead(nn.Module):
def __init__(self,
num_vq=1024,
embed_dim=512,
block_size=16,
num_layers=2,
n_head=8,
drop_out_rate=0.1,
fc_rate=4):
super().__init__()
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
self.ln_f = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, num_vq, bias=False)
self.block_size = block_size
self.apply(self._init_weights)
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, x, src_mask):
for block in self.blocks:
x = block(x, src_mask)
x = self.ln_f(x)
logits = self.head(x)
return logits
|