File size: 1,027 Bytes
f365f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# ุชุญู…ูŠู„ ุงู„ู†ู…ูˆุฐุฌ ู…ู† Hugging Face
model_name = "Salesforce/codegen-350M-mono"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# ุฏุงู„ุฉ ุชูˆู„ูŠุฏ ุงู„ูƒูˆุฏ
def generate_code(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=200, do_sample=True, top_k=50)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# ูˆุงุฌู‡ุฉ Gradio
interface = gr.Interface(
    fn=generate_code,
    inputs=gr.Textbox(lines=5, label="ุงูƒุชุจ ูˆุตู ุงู„ูƒูˆุฏ ู‡ู†ุง"),
    outputs=gr.Textbox(lines=10, label="ุงู„ูƒูˆุฏ ุงู„ู†ุงุชุฌ"),
    title="ู…ูˆู„ู‘ุฏ ูƒูˆุฏ Python",
    description="ุงูƒุชุจ ูˆุตูู‹ุง ู„ู„ูƒูˆุฏ ุงู„ุฐูŠ ุชุฑูŠุฏู‡ุŒ ูˆุณู†ูˆู„ู‘ุฏ ูƒูˆุฏู‹ุง ุจุงุณุชุฎุฏุงู… ู†ู…ูˆุฐุฌ ุฐูƒุงุก ุตู†ุงุนูŠ."
)

# ุชุดุบูŠู„ ุงู„ุชุทุจูŠู‚
interface.launch()