File size: 20,154 Bytes
8eb0b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import gradio as gr
import yaml
import os
from datetime import datetime
from typing import Dict, Any, Union, List
from config.path_config import ensure_directories_exist, get_config_download_path, WORKING_DIR


class ConfigEditor:
    """Simplified Configuration Editor for Petri Net Algorithm Parameters"""
    
    def __init__(self):
        self.config_data = {}
        self.error_message = ""
        
        # Parameter definitions with validation rules
        self.param_groups = {
            "Image Processing": {
                "min_dimension_threshold": {
                    "type": "number", "default": 800, "min": 100, "max": 2000,
                    "label": "Min Dimension Threshold", 
                    "help": "Minimum image dimension before upscaling (pixels)"
                },
                "upscale_factor": {
                    "type": "number", "default": 2.0, "min": 1.0, "max": 5.0, "step": 0.1,
                    "label": "Upscale Factor",
                    "help": "Factor to upscale small images"
                }
            },
            
            "Text Detection": {
                "bin_thresh": {
                    "type": "slider", "default": 0.3, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Binary Threshold",
                    "help": "Binarization threshold for text detection"
                },
                "box_thresh": {
                    "type": "slider", "default": 0.1, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Box Threshold",
                    "help": "Confidence threshold for text box detection"
                }
            },
            
            "Shape Detection": {
                "fill_circle_enclosing_threshold": {
                    "type": "slider", "default": 0.8, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Circle Fill Threshold",
                    "help": "Threshold for filling detected circles"
                },
                "fill_rect_enclosing_threshold": {
                    "type": "slider", "default": 0.95, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Rectangle Fill Threshold", 
                    "help": "Threshold for filling detected rectangles"
                },
                "erosion_kernel_size": {
                    "type": "text", "default": "[3, 3]",
                    "label": "Erosion Kernel Size",
                    "help": "Kernel size for erosion [width, height]"
                },
                "min_stable_length": {
                    "type": "number", "default": 3, "min": 1, "max": 10,
                    "label": "Min Stable Length",
                    "help": "Minimum iterations for shape stability"
                },
                "max_erosion_iterations": {
                    "type": "number", "default": 30, "min": 5, "max": 100,
                    "label": "Max Erosion Iterations",
                    "help": "Maximum erosion iterations"
                },
                "classify_circle_overlap_threshold": {
                    "type": "slider", "default": 0.8, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Circle Classification Threshold",
                    "help": "Overlap threshold for circle classification"
                },
                "classify_rect_overlap_threshold": {
                    "type": "slider", "default": 0.85, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Rectangle Classification Threshold",
                    "help": "Overlap threshold for rectangle classification"
                },
                "remove_nodes_dilation_kernel_size": {
                    "type": "text", "default": "[3, 3]",
                    "label": "Dilation Kernel Size",
                    "help": "Kernel size for node removal [width, height]"
                },
                "remove_nodes_dilation_iterations": {
                    "type": "number", "default": 3, "min": 1, "max": 10,
                    "label": "Dilation Iterations",
                    "help": "Number of dilation iterations for node removal"
                }
            },
            
            "Connection Processing - Hough Transform": {
                "hough_rho": {
                    "type": "number", "default": 1, "min": 1, "max": 5,
                    "label": "Rho (distance resolution)",
                    "help": "Distance resolution in pixels"
                },
                "hough_theta_degrees": {
                    "type": "number", "default": 1.0, "min": 0.1, "max": 5.0, "step": 0.1,
                    "label": "Theta (angle resolution)",
                    "help": "Angle resolution in degrees"
                },
                "hough_threshold": {
                    "type": "number", "default": 15, "min": 5, "max": 50,
                    "label": "Threshold",
                    "help": "Accumulator threshold for line detection"
                },
                "hough_min_line_length": {
                    "type": "number", "default": 10, "min": 1, "max": 50,
                    "label": "Min Line Length",
                    "help": "Minimum length of line segments"
                },
                "hough_max_line_gap": {
                    "type": "number", "default": 25, "min": 1, "max": 100,
                    "label": "Max Line Gap",
                    "help": "Maximum gap to merge line segments"
                }
            },
            
            "Connection Processing - Advanced": {
                "hough_bundler_min_distance": {
                    "type": "number", "default": 10.0, "min": 1.0, "max": 50.0, "step": 0.5,
                    "label": "Bundler Min Distance",
                    "help": "Minimum distance for line bundling"
                },
                "hough_bundler_min_angle": {
                    "type": "number", "default": 3.0, "min": 1.0, "max": 15.0, "step": 0.5,
                    "label": "Bundler Min Angle",
                    "help": "Minimum angle for line bundling"
                },
                "arrowhead_confidence_threshold_percent": {
                    "type": "number", "default": 10.0, "min": 1.0, "max": 100.0, "step": 1.0,
                    "label": "Arrowhead Confidence (%)",
                    "help": "Confidence threshold for arrowhead detection"
                },
                "proximity_thres_place": {
                    "type": "number", "default": 1.5, "min": 0.5, "max": 5.0, "step": 0.1,
                    "label": "Place Proximity Threshold",
                    "help": "Proximity threshold for places (×radius)"
                },
                "proximity_thres_trans_height": {
                    "type": "number", "default": 1.4, "min": 0.5, "max": 5.0, "step": 0.1,
                    "label": "Transition Height Threshold",
                    "help": "Height proximity threshold for transitions"
                },
                "proximity_thres_trans_width": {
                    "type": "number", "default": 3.0, "min": 0.5, "max": 10.0, "step": 0.1,
                    "label": "Transition Width Threshold",
                    "help": "Width proximity threshold for transitions"
                },
                "arrowhead_proximity_threshold": {
                    "type": "number", "default": 40, "min": 10, "max": 100,
                    "label": "Arrowhead Proximity",
                    "help": "Distance threshold for arrowhead linking"
                },
                "text_linking_threshold": {
                    "type": "number", "default": 25.0, "min": 5.0, "max": 100.0, "step": 1.0,
                    "label": "Text Linking Threshold",
                    "help": "Distance threshold for text linking"
                }
            },
            
            "Path Finding": {
                "proximity_threshold": {
                    "type": "number", "default": 30.0, "min": 5.0, "max": 100.0, "step": 1.0,
                    "label": "Proximity Threshold",
                    "help": "Distance threshold for path segment connection"
                },
                "dot_product_weight": {
                    "type": "slider", "default": 0.6, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Dot Product Weight",
                    "help": "Weight for direction similarity in scoring"
                },
                "distance_to_line_weight": {
                    "type": "slider", "default": 0.2, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Distance to Line Weight",
                    "help": "Weight for distance to line in scoring"
                },
                "endpoint_distance_weight": {
                    "type": "slider", "default": 0.2, "min": 0.0, "max": 1.0, "step": 0.05,
                    "label": "Endpoint Distance Weight", 
                    "help": "Weight for endpoint distance in scoring"
                }
            }
        }
        
        self.components = {}
        
    def create_component(self, param_name: str, param_def: Dict) -> Any:
        """Create appropriate Gradio component for parameter"""
        if param_def["type"] == "slider":
            return gr.Slider(
                minimum=param_def["min"],
                maximum=param_def["max"], 
                step=param_def["step"],
                value=param_def["default"],
                label=param_def["label"],
                info=param_def["help"]
            )
        elif param_def["type"] == "number":
            return gr.Number(
                minimum=param_def.get("min"),
                maximum=param_def.get("max"),
                step=param_def.get("step", 1),
                value=param_def["default"],
                label=param_def["label"],
                info=param_def["help"]
            )
        elif param_def["type"] == "text":
            return gr.Textbox(
                value=param_def["default"],
                label=param_def["label"],
                info=param_def["help"]
            )
    
    def validate_parameter(self, param_name: str, value: Any) -> tuple[Any, str]:
        """Validate parameter value, return (validated_value, error_message)"""
        # Find parameter definition
        param_def = None
        for group_params in self.param_groups.values():
            if param_name in group_params:
                param_def = group_params[param_name]
                break
        
        if not param_def:
            return value, f"Unknown parameter: {param_name}"
        
        try:
            # Handle list parameters (kernel sizes)
            if param_def["type"] == "text" and "kernel" in param_name.lower():
                if isinstance(value, str):
                    # Parse string representation of list
                    parsed = eval(value.strip())
                    if not isinstance(parsed, list) or len(parsed) != 2:
                        return None, f"{param_def['label']}: Must be a list of 2 numbers [w, h]"
                    if not all(isinstance(x, (int, float)) and x > 0 for x in parsed):
                        return None, f"{param_def['label']}: Values must be positive numbers"
                    return parsed, ""
                return value, ""
            
            # Validate numeric ranges
            if param_def["type"] in ["number", "slider"]:
                if not isinstance(value, (int, float)):
                    return None, f"{param_def['label']}: Must be a number"
                
                min_val = param_def.get("min")
                max_val = param_def.get("max")
                
                if min_val is not None and value < min_val:
                    return None, f"{param_def['label']}: Must be ≥ {min_val}"
                if max_val is not None and value > max_val:
                    return None, f"{param_def['label']}: Must be ≤ {max_val}"
            
            return value, ""
            
        except Exception as e:
            return None, f"{param_def['label']}: {str(e)}"
    
    def load_config_file(self, file_obj):
        """Load configuration from uploaded file"""
        if file_obj is None:
            return self._get_current_values() + ("No file selected",)
        
        try:
            with open(file_obj.name, 'r') as f:
                self.config_data = yaml.safe_load(f)
            
            # Update component values
            values = []
            for group_name, group_params in self.param_groups.items():
                for param_name, param_def in group_params.items():
                    value = self._get_config_value(param_name, param_def["default"])
                    values.append(value)
            
            return tuple(values) + (f"Loaded: {os.path.basename(file_obj.name)}",)
            
        except Exception as e:
            return self._get_current_values() + (f"Error loading file: {str(e)}",)
    
    def _get_config_value(self, param_name: str, default: Any) -> Any:
        """Get parameter value from loaded config with proper path handling"""
        # Handle path finding parameters specially
        if param_name in ["proximity_threshold", "dot_product_weight", "distance_to_line_weight", "endpoint_distance_weight"]:
            return self.config_data.get("connection_processing", {}).get("path_finding", {}).get(param_name, default)
        
        # Handle other connection_processing parameters
        elif param_name.startswith(("hough_", "arrowhead_", "proximity_", "text_")):
            return self.config_data.get("connection_processing", {}).get(param_name, default)
        
        # Handle shape detection parameters
        elif param_name in ["fill_circle_enclosing_threshold", "fill_rect_enclosing_threshold", "erosion_kernel_size", 
                           "min_stable_length", "max_erosion_iterations", "classify_circle_overlap_threshold",
                           "classify_rect_overlap_threshold", "remove_nodes_dilation_kernel_size", "remove_nodes_dilation_iterations"]:
            value = self.config_data.get("shape_detection", {}).get(param_name, default)
            # Format lists as strings for text inputs
            if isinstance(value, list):
                return str(value)
            return value
        
        # Handle text detection parameters
        elif param_name in ["bin_thresh", "box_thresh"]:
            return self.config_data.get("text_detection", {}).get(param_name, default)
        
        # Handle image processing parameters
        elif param_name in ["min_dimension_threshold", "upscale_factor"]:
            return self.config_data.get("image_processing", {}).get(param_name, default)
        
        return default
    
    def _get_current_values(self) -> tuple:
        """Get current values from all components"""
        values = []
        for group_params in self.param_groups.values():
            for param_name, param_def in group_params.items():
                values.append(param_def["default"])
        return tuple(values)
    
    def save_config(self, *param_values) -> tuple:
        """Save configuration to temporary file for download"""
        try:
            # Validate all parameters
            config = {
                "image_processing": {},
                "text_detection": {},
                "shape_detection": {},
                "connection_processing": {"path_finding": {}}
            }
            
            errors = []
            value_index = 0
            
            for group_name, group_params in self.param_groups.items():
                for param_name, param_def in group_params.items():
                    value = param_values[value_index]
                    validated_value, error = self.validate_parameter(param_name, value)
                    
                    if error:
                        errors.append(error)
                    else:
                        # Place value in correct config section
                        if param_name in ["proximity_threshold", "dot_product_weight", "distance_to_line_weight", "endpoint_distance_weight"]:
                            config["connection_processing"]["path_finding"][param_name] = validated_value
                        elif param_name.startswith(("hough_", "arrowhead_", "proximity_", "text_")):
                            config["connection_processing"][param_name] = validated_value
                        elif param_name in ["fill_circle_enclosing_threshold", "fill_rect_enclosing_threshold", "erosion_kernel_size", 
                                           "min_stable_length", "max_erosion_iterations", "classify_circle_overlap_threshold",
                                           "classify_rect_overlap_threshold", "remove_nodes_dilation_kernel_size", "remove_nodes_dilation_iterations"]:
                            config["shape_detection"][param_name] = validated_value
                        elif param_name in ["bin_thresh", "box_thresh"]:
                            config["text_detection"][param_name] = validated_value
                        elif param_name in ["min_dimension_threshold", "upscale_factor"]:
                            config["image_processing"][param_name] = validated_value
                    
                    value_index += 1
            
            if errors:
                return "Validation errors:\n" + "\n".join(errors), gr.update(visible=False)
            
            # Generate filename for display purposes

            
            # Use centralized path management
            ensure_directories_exist()
            temp_filepath = get_config_download_path()
            
            # Save file to temporary location in working directory (overwrites previous version)
            with open(temp_filepath, 'w') as f:
                yaml.dump(config, f, default_flow_style=False, sort_keys=False)
            
            return f"Configuration prepared for download: {temp_filepath.split('/')[-1]}", gr.update(value=temp_filepath, visible=True)
            
        except Exception as e:
            return f"Error saving configuration: {str(e)}", gr.update(visible=False)
    
    def create_interface(self) -> gr.TabItem:
        """Create the Configuration Editor interface"""
        with gr.TabItem("Simple Config Editor") as tab:
            gr.Markdown("## Algorithm Configuration Editor")
            gr.Markdown("Upload an existing config file or modify parameters below, then save.")
            
            # File upload
            with gr.Row():
                file_upload = gr.File(
                    label="Upload Configuration File (.yaml/.yml)",
                    file_types=[".yaml", ".yml"]
                )
            
            status = gr.Textbox(label="Status", interactive=False)
            
            # Create parameter sections
            components_list = []
            with gr.Accordion("Configuration Parameters", open=True):
                for group_name, group_params in self.param_groups.items():
                    with gr.Accordion(group_name, open=False):
                        for param_name, param_def in group_params.items():
                            component = self.create_component(param_name, param_def)
                            self.components[param_name] = component
                            components_list.append(component)
            
            # Save section
            with gr.Row():
                save_btn = gr.Button("Save Configuration", variant="primary")
            
            download_file = gr.File(label="Download", visible=False)
            
            # Event handlers
            file_upload.upload(
                fn=self.load_config_file,
                inputs=[file_upload],
                outputs=components_list + [status]
            )
            
            save_btn.click(
                fn=self.save_config,
                inputs=components_list,
                outputs=[status, download_file]
            )
            
        return tab