Spaces:
Sleeping
Sleeping
File size: 4,081 Bytes
fa81432 95f108c fa81432 347c16b fdbf59c 347c16b fdbf59c fa81432 fdbf59c fa81432 fdbf59c 95f108c fa81432 347c16b fa81432 347c16b fa81432 95f108c 347c16b 95f108c 347c16b fdbf59c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import sys
if sys.version_info[0] < 3 and sys.version_info[1] < 2:
raise Exception("Must be using >= Python 3.2")
from os import listdir, path
if not path.isfile('data/face_detection/s3fd-619a316812.pth'):
raise FileNotFoundError('Save the s3fd model to face_detection/detection/sfd/s3fd.pth before running this script!')
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import argparse, os, traceback, subprocess
import cv2
from tqdm import tqdm
from glob import glob
import audio
from hparams import hparams as hp
import face_detection
def _progress(generated, to_generate):
progress((generated, to_generate))
def preprocess_video_files(args):
fa = [face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cpu') for _ in range(args.ngpu)]
template = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'
def process_video_file(vfile, args, gpu_id):
video_stream = cv2.VideoCapture(vfile)
frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
frames.append(frame)
vidname = os.path.basename(vfile).split('.')[0]
dirname = vfile.split('/')[-2]
fulldir = path.join(args.preprocessed_root, dirname, vidname)
os.makedirs(fulldir, exist_ok=True)
batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)]
i = -1
for fb in tqdm(batches, desc='Processing Video Frames'):
preds = fa[gpu_id].get_detections_for_batch(np.asarray(fb))
for j, f in enumerate(preds):
i += 1
if f is None:
continue
x1, y1, x2, y2 = f
cv2.imwrite(path.join(fulldir, '{}.jpg'.format(i)), fb[j][y1:y2, x1:x2])
_progress(i + 1, len(batches) * args.batch_size)
def process_audio_file(vfile, args):
vidname = os.path.basename(vfile).split('.')[0]
dirname = vfile.split('/')[-2]
fulldir = path.join(args.preprocessed_root, dirname, vidname)
os.makedirs(fulldir, exist_ok=True)
wavpath = path.join(fulldir, 'audio.wav')
command = template.format(vfile, wavpath)
subprocess.call(command, shell=True)
_progress(1, 1)
def mp_handler(job):
vfile, args, gpu_id = job
try:
process_video_file(vfile, args, gpu_id)
except KeyboardInterrupt:
exit(0)
except:
traceback.print_exc()
print('Started processing for {} with {} GPUs'.format(args.data_root, args.ngpu))
filelist = glob(path.join(args.data_root, '*.mp4'))
jobs = [(vfile, args, i % args.ngpu) for i, vfile in enumerate(filelist)]
p = ThreadPoolExecutor(args.ngpu)
futures = [p.submit(mp_handler, j) for j in jobs]
_ = [r.result() for r in tqdm(as_completed(futures), total=len(futures))]
print('Dumping audios...')
for vfile in tqdm(filelist):
try:
process_audio_file(vfile, args)
_progress(1, 1)
except KeyboardInterrupt:
exit(0)
except:
traceback.print_exc()
continue
def main(args):
print('Started processing for {} with {} GPUs'.format(args.data_root, args.ngpu))
filelist = glob(path.join(args.data_root, '*.mp4'))
jobs = [(vfile, args, i % args.ngpu) for i, vfile in enumerate(filelist)]
p = ThreadPoolExecutor(args.ngpu)
futures = [p.submit(mp_handler, j) for j in jobs]
_ = [r.result() for r in tqdm(as_completed(futures), total=len(futures))]
_progress(1, 1)
print('Dumping audios...')
for vfile in tqdm(filelist, desc='Processing Audio Files'):
try:
process_audio_file(vfile, args)
except KeyboardInterrupt:
exit(0)
except:
traceback.print_exc()
continue
_progress(1, len(filelist))
if __name__ == '__main__':
main(args) |