Spaces:
Sleeping
Sleeping
File size: 13,012 Bytes
9b66001 1c55554 9b66001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
from zlib import crc32
import struct
import gradio as gr
import os
import pandas as pd
import numpy as np
import joblib
import torch
import torch.nn as nn
import torch.nn.functional as F
# Define top features
top_features = set([
'pm.vbatMV', 'stateEstimate.z', 'motor.m3', 'stateEstimate.yaw', 'yaw_cos',
'motor.m2', 'stateEstimate.y', 'stateEstimate.x', 'motor.m1', 'theta',
'motor.m4', 'position_magnitude', 'combined_orientation', 'pwm.m3_pwm',
'stateEstimate.roll', 'phi', 'pwm.m2_pwm', 'roll_cos', 'vx_cosine',
'stateEstimate.vx', 'velocity_magnitude', 'stateEstimate.vy', 'pwm.m4_pwm',
'stateEstimate.vz', 'pwm.m1_pwm'
])
# Load the median values from the CSV once
feature_medians = pd.read_csv("model/feature_medians.csv")
medians_dict = feature_medians.set_index('Feature')['Median'].to_dict()
# Load the label encoder, scaler, and saved feature names
label_encoder = joblib.load('model/label_encoder.pkl')
scaler = joblib.load('model/scaler.pkl')
saved_feature_names = joblib.load('model/feature_names.pkl')
# Define the EnhancedFaultDetectionNN model
class EnhancedFaultDetectionNN(nn.Module):
def __init__(self, input_size, output_size, dropout_prob=0.08):
super(EnhancedFaultDetectionNN, self).__init__()
self.fc1 = nn.Linear(input_size, 1024)
self.bn1 = nn.BatchNorm1d(1024)
self.fc2 = nn.Linear(1024, 512)
self.bn2 = nn.BatchNorm1d(512)
self.fc3 = nn.Linear(512, 256)
self.bn3 = nn.BatchNorm1d(256)
self.fc4 = nn.Linear(256, output_size)
self.dropout = nn.Dropout(dropout_prob)
def forward(self, x):
x = F.relu(self.bn1(self.fc1(x)))
x = self.dropout(x)
x = F.relu(self.bn2(self.fc2(x)))
x = self.dropout(x)
x = F.relu(self.bn3(self.fc3(x)))
x = self.dropout(x)
x = self.fc4(x)
return x
# Load the PyTorch model
model_path = 'model/best_model_without_oversampling128.pth'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_size = len(saved_feature_names)
output_size = len(label_encoder.classes_)
model = EnhancedFaultDetectionNN(input_size, output_size).to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
# Mapping of fault types to corresponding images and comments
defect_image_map = {
"Extra Weight": {
"image": "images/weight.png",
"comment": "A weight added near the M3 motor causes lift imbalance."
},
"Propeller Cut": {
"image": "images/propeller_cut.png",
"comment": "A cut on the M2 propeller reduces thrust and causes instability."
},
"Tape on Propeller": {
"image": "images/tape.png",
"comment": "Tape on the M3 propeller leads to imbalance, drag, and vibrations, reducing stability."
},
"Normal Flight": {
"image": "images/normal_flight.png",
"comment": "The quadcopter operates normally with balanced thrust and stability."
},
}
# List of log files corresponding to the fault types
log_files = [
"Logs_Samples/add_weight_W1_near_M3_E9_log04",
"Logs_Samples/cut_M2_0.5мм_46.5мм_E9_log02",
"Logs_Samples/tape_on_propeller_M3_E9_log01",
"Logs_Samples/normal_flight_E8_log03"
]
# Mapping simplified labels to their corresponding folder names
LabelsMap = {
"Extra Weight": "add_weight_W1_near_M3",
"Propeller Cut": "cut_M2_0.5мм_46.5мм",
"Tape on Propeller": "tape_on_propeller_M3",
"Normal Flight": "normal_flight"
}
# Function to retrieve the log file path using LabelsMap and log_files
def get_log_file_path(label_key):
label_value = LabelsMap[label_key]
for log_file in log_files:
if label_value in log_file:
return log_file
return None # Return None if no matching file is found
def get_name(data, idx):
end_idx = idx
while data[end_idx] != 0:
end_idx += 1
return data[idx:end_idx].decode("utf-8"), end_idx + 1
def cfusdlog_decode(file):
data = file.read()
if data[0] != 0xBC:
raise gr.Error("Invalid file format: Magic header not found.")
crc = crc32(data[0:-4])
expected_crc, = struct.unpack('I', data[-4:])
if crc != expected_crc:
raise gr.Error("File integrity check failed: CRC mismatch.")
version, num_event_types = struct.unpack('HH', data[1:5])
if version not in [1, 2]:
raise gr.Error(f"Unsupported log file version: {version}")
result = {}
event_by_id = {}
idx = 5
for _ in range(num_event_types):
event_id, = struct.unpack('H', data[idx:idx+2])
idx += 2
event_name, idx = get_name(data, idx)
result[event_name] = {'timestamp': []}
num_variables, = struct.unpack('H', data[idx:idx+2])
idx += 2
fmt_str = "<"
variables = []
for _ in range(num_variables):
var_name_and_type, idx = get_name(data, idx)
var_name = var_name_and_type[:-3]
var_type = var_name_and_type[-2]
result[event_name][var_name] = []
fmt_str += var_type
variables.append(var_name)
event_by_id[event_id] = {
'name': event_name,
'fmt_str': fmt_str,
'num_bytes': struct.calcsize(fmt_str),
'variables': variables,
}
while idx < len(data) - 4:
if version == 1:
event_id, timestamp = struct.unpack('<HI', data[idx:idx+6])
idx += 6
elif version == 2:
event_id, timestamp = struct.unpack('<HQ', data[idx:idx+10])
timestamp /= 1000.0
idx += 10
event = event_by_id[event_id]
event_data = struct.unpack(event['fmt_str'], data[idx:idx+event['num_bytes']])
idx += event['num_bytes']
for var, value in zip(event['variables'], event_data):
result[event['name']][var].append(value)
result[event['name']]['timestamp'].append(timestamp)
for event_name, event_data in result.items():
for var_name, var_data in event_data.items():
result[event_name][var_name] = np.array(var_data)
return {k: v for k, v in result.items() if len(v['timestamp']) > 0} # Ensure that only non-empty timestamps are kept
def fix_time(log_data):
try:
timestamps = log_data["timestamp"]
if len(timestamps) == 0:
raise gr.Error("Timestamp data is empty.")
first_value = timestamps[0]
log_data["timestamp"] = [t - first_value for t in timestamps]
except KeyError:
raise gr.Error("Timestamp key not found in the log data.")
except Exception as e:
raise gr.Error(f"Failed to adjust timestamps: {e}")
def process_log_file(file):
try:
log_data = cfusdlog_decode(file)
log_data = log_data.get('fixedFrequency', {})
if not log_data:
raise gr.Warning(f"No 'fixedFrequency' data found in the log file")
fix_time(log_data)
parent_dir_name = os.path.basename(os.path.dirname(file.name))
log_data["true_label"] = [parent_dir_name] * len(log_data.get("timestamp", []))
df = pd.DataFrame(log_data)
return df
except Exception as e:
raise gr.Error(f"Failed to process log file: {e}")
def preprocess_single_data_point(single_data_point):
try:
if 'timestamp' in single_data_point.columns:
single_data_point.drop(columns=["timestamp"], inplace=True)
single_data_point.fillna(medians_dict, inplace=True)
state_x, state_y, state_z = single_data_point[['stateEstimate.x', 'stateEstimate.y', 'stateEstimate.z']].values.T
single_data_point['r'] = np.sqrt(state_x**2 + state_y**2 + state_z**2)
single_data_point['theta'] = np.arccos(np.clip(single_data_point['stateEstimate.z'] / single_data_point['r'], -1.0, 1.0)) # Clip to avoid invalid values
single_data_point['phi'] = np.arctan2(single_data_point['stateEstimate.y'], single_data_point['stateEstimate.x'])
single_data_point['position_magnitude'] = single_data_point['r']
velocity_x, velocity_y, velocity_z = single_data_point[['stateEstimate.vx', 'stateEstimate.vy', 'stateEstimate.vz']].values.T
single_data_point['velocity_magnitude'] = np.sqrt(velocity_x**2 + velocity_y**2 + velocity_z**2)
single_data_point['vx_cosine'] = np.divide(velocity_x, single_data_point['velocity_magnitude'], out=np.zeros_like(velocity_x), where=single_data_point['velocity_magnitude']!=0)
single_data_point['vy_cosine'] = np.divide(velocity_y, single_data_point['velocity_magnitude'], out=np.zeros_like(velocity_y), where=single_data_point['velocity_magnitude']!=0)
single_data_point['vz_cosine'] = np.divide(velocity_z, single_data_point['velocity_magnitude'], out=np.zeros_like(velocity_z), where=single_data_point['velocity_magnitude']!=0)
roll, yaw = single_data_point[['stateEstimate.roll', 'stateEstimate.yaw']].values.T
single_data_point['combined_orientation'] = roll + yaw
single_data_point['roll_sin'] = np.sin(np.radians(roll))
single_data_point['roll_cos'] = np.cos(np.radians(roll))
single_data_point['yaw_sin'] = np.sin(np.radians(yaw))
single_data_point['yaw_cos'] = np.cos(np.radians(yaw))
features_to_keep = list(top_features.intersection(single_data_point.columns))
return single_data_point[features_to_keep + ['true_label']]
except Exception as e:
raise gr.Error(f"Failed to preprocess single data point: {e}")
def predict(file_path):
try:
with open(file_path, 'rb') as file:
log_df = process_log_file(file)
if log_df is not None:
single_data_point = log_df.sample(1)
preprocessed_data_point = preprocess_single_data_point(single_data_point)
if preprocessed_data_point is not None:
X = preprocessed_data_point.drop(columns=['true_label'])
y = preprocessed_data_point['true_label']
X_ordered = X[saved_feature_names]
X_scaled = scaler.transform(X_ordered)
X_tensor = torch.tensor(X_scaled, dtype=torch.float32).to(device)
with torch.no_grad():
logits = model(X_tensor)
probabilities = F.softmax(logits, dim=1)
confidence_scores, predicted_classes = torch.max(probabilities, dim=1)
predicted_labels = label_encoder.inverse_transform(predicted_classes.cpu().numpy())
confidence_scores = confidence_scores.cpu().numpy()
predicted_label_value = predicted_labels[0]
predicted_label_key = [k for k, v in LabelsMap.items() if v == predicted_label_value][0]
label_confidence_pairs = f"{predicted_label_key}: {predicted_label_value} (Confidence: {confidence_scores[0]:.4f})"
# Retrieve the corresponding image and comment using the key name
defect_info = defect_image_map.get(predicted_label_key, {"image": "images/Placeholder.png", "comment": "No information available."})
image_path = defect_info["image"]
comment = defect_info["comment"]
return image_path, f"{label_confidence_pairs}\n\nComment: {comment}"
else:
raise gr.Warning("Log file processing returned no data.")
except Exception as e:
raise gr.Error(f"Failed to process file: {e}")
return None, "Failed to process file"
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Fault Detection in Nano-Quadcopter")
gr.Markdown("This interface classifies faults in a nano-quadcopter using a deep neural network model.")
with gr.Row():
with gr.Column():
example_dropdown = gr.Dropdown(
choices=["Extra Weight", "Propeller Cut", "Tape on Propeller", "Normal Flight"],
label="Select Log file with Specific Fault Type"
)
submit_btn = gr.Button("Classify")
with gr.Column():
image_output = gr.Image(type="filepath", label="Corresponding Image")
label_output = gr.Textbox(label="Predicted Label and Confidence Score")
def classify_example(example):
try:
file_path = get_log_file_path(example)
if file_path:
file_path = file_path
image_path, label_and_comment = predict(file_path)
return image_path, label_and_comment
else:
raise gr.Error("No matching log file found.")
except KeyError as e:
raise gr.Error(f"Error: {e}")
submit_btn.click(
fn=classify_example,
inputs=[example_dropdown],
outputs=[image_output, label_output],
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=True, debug=True)
|