Spaces:
Runtime error
Runtime error
File size: 16,805 Bytes
8106a70 a1e4ced 8106a70 cded514 5da7484 8106a70 1bdf16c e222bf6 4832cf7 5b783e9 4832cf7 628d0d9 2391914 4832cf7 5da7484 cb0113d 8106a70 5da7484 cb0113d 8106a70 5da7484 cb0113d 5da7484 cb0113d a3e23e4 cb0113d f30cc6a cb0113d 2f9b63d cb0113d 8106a70 cb0113d cded514 4832cf7 2f9b63d 5b783e9 cb0113d e3f4780 cb0113d 628d0d9 dcb8221 628d0d9 dcb8221 628d0d9 cb0113d 3911645 2391914 9ffde4a 2391914 3911645 2391914 3911645 cb0113d 2391914 4832cf7 cb0113d 4832cf7 cb0113d 4832cf7 cb0113d 4832cf7 cb0113d 4832cf7 cb0113d 4832cf7 cb0113d 4832cf7 5bfb431 cb0113d 5bfb431 4832cf7 cb0113d 4832cf7 cb0113d 4832cf7 569a0c7 e3f4780 cb0113d cedc9a0 cb0113d 8106a70 569a0c7 cb0113d cedc9a0 cb0113d cedc9a0 8106a70 569a0c7 cb0113d 0e2461f cb0113d cedc9a0 cb0113d 4832cf7 cded514 cb0113d cded514 cb0113d cded514 cb0113d cded514 e3f4780 588b426 6ac6878 588b426 6ac6878 e3f4780 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
from __future__ import unicode_literals
import youtube_dl
import yt_dlp
from pydub import AudioSegment
from pyannote.audio import Pipeline
import re
import whisper
import os
import ffmpeg
import subprocess
import gradio as gr
import traceback
import json
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token="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")
from pydub.effects import speedup
import moviepy.editor as mp
import datetime
import torch
import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import NeMoPretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
import wave
import contextlib
from sklearn.cluster import AgglomerativeClustering
import numpy as np
import json
from datetime import timedelta
__FILES = set()
def CreateFile(filename):
__FILES.add(filename)
return filename
def RemoveFile(filename):
if (os.path.isfile(filename)):
os.remove(filename)
def RemoveAllFiles():
for file in __FILES:
if (os.path.isfile(file)):
os.remove(file)
def Transcribe_V1(NumberOfSpeakers, SpeakerNames="", audio="temp_audio.wav"):
SPEAKER_DICT = {}
SPEAKERS = [speaker.strip() for speaker in SpeakerNames.split(',') if len(speaker)]
def GetSpeaker(sp):
speaker = sp
if sp not in list(SPEAKER_DICT.keys()):
if len(SPEAKERS):
t = SPEAKERS.pop(0)
SPEAKER_DICT[sp] = t
speaker = SPEAKER_DICT[sp]
else:
speaker = SPEAKER_DICT[sp]
return speaker
def millisec(timeStr):
spl = timeStr.split(":")
s = (int)((int(spl[0]) * 60 * 60 + int(spl[1]) * 60 + float(spl[2]) )* 1000)
return s
def preprocess(audio):
t1 = 0 * 1000
t2 = 20 * 60 * 1000
newAudio = AudioSegment.from_wav(audio)
a = newAudio[t1:t2]
spacermilli = 2000
spacer = AudioSegment.silent(duration=spacermilli)
newAudio = spacer.append(a, crossfade=0)
newAudio.export(audio, format="wav")
return spacermilli, spacer
def diarization(audio):
as_audio = AudioSegment.from_wav(audio)
DEMO_FILE = {'uri': 'blabal', 'audio': audio}
if NumberOfSpeakers:
dz = pipeline(DEMO_FILE, num_speakers=NumberOfSpeakers)
else:
dz = pipeline(DEMO_FILE)
with open(CreateFile(f"diarization_{audio}.txt"), "w") as text_file:
text_file.write(str(dz))
dz = open(CreateFile(f"diarization_{audio}.txt")).read().splitlines()
dzList = []
for l in dz:
start, end = tuple(re.findall('[0-9]+:[0-9]+:[0-9]+\.[0-9]+', string=l))
start = millisec(start)
end = millisec(end)
lex = GetSpeaker(re.findall('(SPEAKER_[0-9][0-9])', string=l)[0])
dzList.append([start, end, lex])
sounds = spacer
segments = []
dz = open(CreateFile(f"diarization_{audio}.txt")).read().splitlines()
for l in dz:
start, end = tuple(re.findall('[0-9]+:[0-9]+:[0-9]+\.[0-9]+', string=l))
start = millisec(start)
end = millisec(end)
segments.append(len(sounds))
sounds = sounds.append(as_audio[start:end], crossfade=0)
sounds = sounds.append(spacer, crossfade=0)
sounds.export(CreateFile(f"dz_{audio}.wav"), format="wav")
return f"dz_{audio}.wav", dzList, segments
def transcribe(dz_audio):
model = whisper.load_model("medium")
result = model.transcribe(dz_audio)
# for _ in result['segments']:
# print(_['start'], _['end'], _['text'])
captions = [[((caption["start"]*1000)), ((caption["end"]*1000)), caption["text"]] for caption in result['segments']]
conversation = []
for i in range(len(segments)):
idx = 0
for idx in range(len(captions)):
if captions[idx][0] >= (segments[i] - spacermilli):
break;
while (idx < (len(captions))) and ((i == len(segments) - 1) or (captions[idx][1] < segments[i+1])):
c = captions[idx]
start = dzList[i][0] + (c[0] -segments[i])
if start < 0:
start = 0
idx += 1
if not len(conversation):
conversation.append([dzList[i][2], c[2]])
elif conversation[-1][0] == dzList[i][2]:
conversation[-1][1] += c[2]
else:
conversation.append([dzList[i][2], c[2]])
#print(f"[{dzList[i][2]}] {c[2]}")
return conversation, ("".join([f"{speaker} --> {text}\n" for speaker, text in conversation]))
spacermilli, spacer = preprocess(audio)
dz_audio, dzList, segments = diarization(audio)
conversation, t_text = transcribe(dz_audio)
RemoveAllFiles()
return (t_text, ({ "data": [{"speaker": speaker, "text": text} for speaker, text in conversation]}))
def Transcribe_V2(num_speakers, speaker_names, audio="temp_audio.wav"):
model = whisper.load_model("medium")
embedding_model = NeMoPretrainedSpeakerEmbedding()
# embedding_model = PretrainedSpeakerEmbedding(
# "speechbrain/spkrec-ecapa-voxceleb",
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# )
SPEAKER_DICT = {}
SPEAKERS = [speaker.strip() for speaker in speaker_names.split(',') if len(speaker)]
def GetSpeaker(sp):
speaker = sp
if sp not in list(SPEAKER_DICT.keys()):
if len(SPEAKERS):
t = SPEAKERS.pop(0)
SPEAKER_DICT[sp] = t
speaker = SPEAKER_DICT[sp]
else:
speaker = SPEAKER_DICT[sp]
return speaker
# audio = Audio()
def diarization(audio):
def millisec(timeStr):
spl = timeStr.split(":")
s = (int)((int(spl[0]) * 60 * 60 + int(spl[1]) * 60 + float(spl[2]) )* 1000)
return s
as_audio = AudioSegment.from_wav(audio)
DEMO_FILE = {'uri': 'blabal', 'audio': audio}
hparams = pipeline.parameters(instantiated=True)
hparams["segmentation"]["min_duration_off"] -= 0.25
pipeline.instantiate(hparams)
if num_speakers:
dz = pipeline(DEMO_FILE, num_speakers=num_speakers)
else:
dz = pipeline(DEMO_FILE)
with open(CreateFile(f"diarization_{audio}.txt"), "w") as text_file:
text_file.write(str(dz))
dz = open(CreateFile(f"diarization_{audio}.txt")).read().splitlines()
print(dz)
dzList = []
for l in dz:
start, end = tuple(re.findall('[0-9]+:[0-9]+:[0-9]+\.[0-9]+', string=l))
start = millisec(start)
end = millisec(end)
lex = GetSpeaker(re.findall('(SPEAKER_[0-9][0-9])', string=l)[0])
dzList.append([start, end, lex])
return dzList
def get_output(segments):
# print(segments)
conversation=[]
for (i, segment) in enumerate(segments):
# print(f"{i}, {segment["speaker"]}, {segments[i - 1]["speaker"]}, {}")
if not len(conversation):
conversation.append([str(timedelta(seconds=float(segment['start']))),str(timedelta(seconds=float(segment['end']))),GetSpeaker(segment["speaker"]), segment["text"].lstrip()])
elif conversation[-1][2] == GetSpeaker(segment["speaker"]):
conversation[-1][3] += segment["text"].lstrip()
else:
conversation.append([str(timedelta(seconds=float(segment['start']))),str(timedelta(seconds=float(segment['end']))),GetSpeaker(segment["speaker"]), segment["text"].lstrip()])
# if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
# if i != 0:
# conversation.append([GetSpeaker(segment["speaker"]), segment["text"][1:]]) # segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
# conversation[-1][1] += segment["text"][1:]
# return output
return ("".join([f"[{start}] - {speaker} \n{text}\n" for start, end, speaker, text in conversation])), ({ "data": [{"start": start, "end":end, "speaker": speaker, "text": text} for start, end, speaker, text in conversation]})
def get_duration(path):
with contextlib.closing(wave.open(path,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
return frames / float(rate)
def make_embeddings(path, segments, duration):
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(path, segment, duration)
return np.nan_to_num(embeddings)
def segment_embedding(path, segment, duration):
start = segment["start"]
# Whisper overshoots the end timestamp in the last segment
end = min(duration, segment["end"])
clip = Segment(start, end)
waveform, sample_rate = Audio().crop(path, clip)
return embedding_model(waveform[None])
def add_speaker_labels(segments, embeddings, num_speakers):
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
def time(secs):
return datetime.timedelta(seconds=round(secs))
duration = get_duration(audio)
if duration > 4 * 60 * 60:
return "Audio duration too long"
print(json.dumps(diarization(audio)))
result = model.transcribe(audio)
print(json.dumps(result))
segments = result["segments"]
num_speakers = min(max(round(num_speakers), 1), len(segments))
if len(segments) == 1:
segments[0]['speaker'] = 'SPEAKER 1'
else:
embeddings = make_embeddings(audio, segments, duration)
add_speaker_labels(segments, embeddings, num_speakers)
return get_output(segments)
# return output
def AudioTranscribe(NumberOfSpeakers=None, SpeakerNames="", audio="", retries=5):
print(f"{NumberOfSpeakers}, {SpeakerNames}, {retries}")
if retries:
# subprocess.call(['ffmpeg', '-i', audio,'temp_audio.wav'])
try:
subprocess.call(['ffmpeg', '-i', audio,'temp_audio.wav'])
except Exception as ex:
traceback.print_exc()
return AudioTranscribe(NumberOfSpeakers, SpeakerNames, audio, retries-1)
if not (os.path.isfile("temp_audio.wav")):
return AudioTranscribe(NumberOfSpeakers, SpeakerNames, audio, retries-1)
return Transcribe_V2(NumberOfSpeakers, SpeakerNames)
else:
raise gr.Error("There is some issue ith Audio Transcriber. Please try again later!")
def VideoTranscribe(NumberOfSpeakers=None, SpeakerNames="", video="", retries=5):
if retries:
try:
clip = mp.VideoFileClip(video)
clip.audio.write_audiofile("temp_audio.wav")
# command = f"ffmpeg -i {video} -ab 160k -ac 2 -ar 44100 -vn temp_audio.wav"
# subprocess.call(command, shell=True)
except Exception as ex:
traceback.print_exc()
return VideoTranscribe(NumberOfSpeakers, SpeakerNames, video, retries-1)
if not (os.path.isfile("temp_audio.wav")):
return VideoTranscribe(NumberOfSpeakers, SpeakerNames, video, retries-1)
return Transcribe_V2(NumberOfSpeakers, SpeakerNames)
else:
raise gr.Error("There is some issue ith Video Transcriber. Please try again later!")
return Transcribe_V2(NumberOfSpeakers, SpeakerNames)
def YoutubeTranscribe(NumberOfSpeakers=None, SpeakerNames="", URL="", retries = 5):
if retries:
if "youtu" not in URL.lower():
raise gr.Error(f"{URL} is not a valid youtube URL.")
else:
RemoveFile("temp_audio.wav")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'temp_audio.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([URL])
except:
return YoutubeTranscribe(NumberOfSpeakers, SpeakerNames, URL, retries-1)
stream = ffmpeg.input('temp_audio.m4a')
stream = ffmpeg.output(stream, 'temp_audio.wav')
RemoveFile("temp_audio.m4a")
return Transcribe_V2(NumberOfSpeakers, SpeakerNames)
else:
raise gr.Error(f"Unable to get video from {URL}")
ut = gr.Interface(
fn=YoutubeTranscribe,
inputs=[gr.Number(label="Number of Speakers", placeholder="2"), gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2"), gr.Textbox(label="Youtube Link", placeholder="https://www.youtube.com/watch?v=GECcjrYHH8w"),],
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
)
vt = gr.Interface(
fn=VideoTranscribe,
inputs=[gr.Number(label="Number of Speakers", placeholder="2"), gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2"), 'video'],
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
)
at = gr.Interface(
fn=AudioTranscribe,
inputs=[gr.Number(label="Number of Speakers", placeholder="2"), gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2"), 'audio'],
outputs=[gr.Textbox(label="Transcribed Text", lines=15), gr.JSON(label="Transcribed JSON")]
)
# demo = gr.TabbedInterface([ut, vt, at], ["Youtube URL", "Video", "Audio"])
# demo.launch()
with gr.Blocks() as yav_ui:
with gr.Row():
with gr.Column():
with gr.Tab("Youtube", id=1):
yinput_nos = gr.Number(label="Number of Speakers", placeholder="2")
yinput_sn = gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2")
yinput = gr.Textbox(label="Youtube Link", placeholder="https://www.youtube.com/watch?v=GECcjrYHH8w")
ybutton_transcribe = gr.Button("Transcribe", show_progress=True, scroll_to_output=True)
with gr.Tab("Video", id=2):
vinput_nos = gr.Number(label="Number of Speakers", placeholder="2")
vinput_sn = gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2")
vinput = gr.Video(label="Video")
vbutton_transcribe = gr.Button("Transcribe", show_progress=True, scroll_to_output=True)
with gr.Tab("Audio", id=3):
ainput_nos = gr.Number(label="Number of Speakers", placeholder="2")
ainput_sn = gr.Textbox(label="Name of the Speakers (ordered by the time they speak and separated by comma)", placeholder="If Speaker 1 is first to speak followed by Speaker 2 then -> Speaker 1, Speaker 2")
ainput = gr.Audio(label="Audio", type="filepath")
abutton_transcribe = gr.Button("Transcribe", show_progress=True, scroll_to_output=True)
with gr.Column():
with gr.Tab("Text"):
output_textbox = gr.Textbox(label="Transcribed Text", lines=15)
with gr.Tab("JSON"):
output_json = gr.JSON(label="Transcribed JSON")
ybutton_transcribe.click(
fn=YoutubeTranscribe,
inputs=[yinput_nos,yinput_sn,yinput],
outputs=[output_textbox,output_json]
)
abutton_transcribe.click(
fn=AudioTranscribe,
inputs=[ainput_nos,ainput_sn,ainput],
outputs=[output_textbox,output_json]
)
vbutton_transcribe.click(
fn=VideoTranscribe,
inputs=[vinput_nos,vinput_sn,vinput],
outputs=[output_textbox,output_json]
)
yav_ui.launch(debug=True) |