Spaces:
Sleeping
Sleeping
File size: 7,948 Bytes
7d56215 2c73bfa 3663ccd 2c73bfa 7f10a78 3663ccd 7f10a78 2c73bfa 7d56215 2c73bfa 7d56215 2c73bfa 3663ccd f91d70b 3663ccd 2c73bfa 3663ccd f91d70b 2c73bfa 7d56215 f91d70b 3663ccd f91d70b 7d56215 2c73bfa f91d70b 2c73bfa f91d70b 7d56215 2c73bfa 7d56215 2c73bfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import time
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
import os
import pickle
from datetime import datetime
from backend.generate_metadata import generate_metadata, ingest
css = '''
<style>
.chat-message {
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
}
.chat-message.user {
background-color: #2b313e
}
.chat-message.bot {
background-color: #475063
}
.chat-message .avatar {
width: 20%;
}
.chat-message .avatar img {
max-width: 78px;
max-height: 78px;
border-radius: 50%;
object-fit: cover;
}
.chat-message .message {
width: 80%;
padding: 0 1.5rem;
color: #fff;
}
'''
bot_template = '''
<div class="chat-message bot">
<div class="avatar">
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png"
style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
</div>
<div class="message">{{MSG}}</div>
</div>
'''
user_template = '''
<div class="chat-message user">
<div class="avatar">
<img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
</div>
<div class="message">{{MSG}}</div>
</div>
'''
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings = OpenAIEmbeddings()
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI()
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
# Display user message
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
print(message)
# Display AI response
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
# THIS DOESNT WORK, SOMEONE PLS FIX
# Display source document information if available in the message
if hasattr(message, 'source') and message.source:
st.write(f"Source Document: {message.source}", unsafe_allow_html=True)
def safe_vec_store():
# USE VECTARA INSTEAD
os.makedirs('vectorstore', exist_ok=True)
filename = 'vectores' + datetime.now().strftime('%Y%m%d%H%M') + '.pkl'
file_path = os.path.join('vectorstore', filename)
vector_store = st.session_state.vectorstore
# Serialize and save the entire FAISS object using pickle
with open(file_path, 'wb') as f:
pickle.dump(vector_store, f)
def main():
st.set_page_config(page_title="Doc Verify RAG", page_icon=":hospital:")
st.write(css, unsafe_allow_html=True)
if "openai_api_key" not in st.session_state:
st.session_state.openai_api_key = False
if "openai_org" not in st.session_state:
st.session_state.openai_org = False
if "classify" not in st.session_state:
st.session_state.classify = False
def set_pw():
st.session_state.openai_api_key = True
st.subheader("Your documents")
# OPENAI_ORG_ID = st.text_input("OPENAI ORG ID:")
OPENAI_API_KEY = st.text_input("OPENAI API KEY:", type="password",
disabled=st.session_state.openai_api_key, on_change=set_pw)
if st.session_state.classify:
pdf_doc = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=False)
else:
pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
filenames = [file.name for file in pdf_docs if file is not None]
if st.button("Process"):
with st.spinner("Processing"):
if st.session_state.classify:
# THE CLASSIFICATION APP
st.write("Classifying")
plain_text_doc = ingest(pdf_doc.name)
classification_result = generate_metadata(plain_text_doc)
st.write(classification_result)
else:
# NORMAL RAG
loaded_vec_store = None
for filename in filenames:
if ".pkl" in filename:
file_path = os.path.join('vectorstore', filename)
with open(file_path, 'rb') as f:
loaded_vec_store = pickle.load(f)
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
vec = get_vectorstore(text_chunks)
if loaded_vec_store:
vec.merge_from(loaded_vec_store)
st.warning("loaded vectorstore")
if "vectorstore" in st.session_state:
vec.merge_from(st.session_state.vectorstore)
st.warning("merged to existing")
st.session_state.vectorstore = vec
st.session_state.conversation = get_conversation_chain(vec)
st.success("data loaded")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Doc Verify RAG :hospital:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Classification Instrucitons")
classifier_docs = st.file_uploader("Upload your instructions here and click on 'Process'", accept_multiple_files=True)
filenames = [file.name for file in classifier_docs if file is not None]
if st.button("Process Classification"):
st.session_state.classify = True
with st.spinner("Processing"):
st.warning("set classify")
time.sleep(3)
# Save and Load Embeddings
if st.button("Save Embeddings"):
if "vectorstore" in st.session_state:
safe_vec_store()
# st.session_state.vectorstore.save_local("faiss_index")
st.sidebar.success("saved")
else:
st.sidebar.warning("No embeddings to save. Please process documents first.")
if st.button("Load Embeddings"):
st.warning("this function is not in use, just upload the vectorstore")
if __name__ == '__main__':
main()
|