Spaces:
Sleeping
Sleeping
File size: 2,454 Bytes
ad76d3c ad3d9cd ad76d3c ad3d9cd ad76d3c a4e5d59 ad3d9cd ad76d3c ad3d9cd ad76d3c ad3d9cd 49f06d8 9363231 ad76d3c 9363231 ad76d3c 49f06d8 ad76d3c caf779a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
from huggingface_hub import InferenceClient
# 使用可能なモデルのリスト
models = ["Sakalti/Saba1.5-Pro", "Sakalti/Saba2-Preview", "Sakalti/Saba2.1-Preview"]
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
selected_model
):
# デバッグ用: 各入力値の型を出力
print(f"Message: {message} (Type: {type(message)})")
print(f"History: {history} (Type: {type(history)})")
print(f"System Message: {system_message} (Type: {type(system_message)})")
print(f"Max Tokens: {max_tokens} (Type: {type(max_tokens)})")
print(f"Temperature: {temperature} (Type: {type(temperature)})")
print(f"Top-p: {top_p} (Type: {type(top_p)})")
print(f"Selected Model: {selected_model} (Type: {type(selected_model)})")
# 型変換: selected_modelを文字列に変換
selected_model = str(selected_model)
# 選択したモデルに基づいてInferenceClientを初期化
client = InferenceClient(selected_model)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# インターフェース
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown(choices=models, value=models[0], label="モデル"),
gr.Textbox(value="あなたはフレンドリーなチャットボットです。", label="システムメッセージ"),
gr.Slider(minimum=1, maximum=2048, value=768, step=1, label="新規トークン最大"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (核 sampling)",
),
],
concurrency_limit=30 # 例: 同時に30つのリクエストを処理
)
if __name__ == "__main__":
demo.launch(share=True) |