File size: 1,845 Bytes
b87de8f
78af57e
b87de8f
2810627
 
b87de8f
5fb9a0f
0266a31
2810627
b87de8f
78af57e
 
 
 
b87de8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c36ba1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import streamlit as st
from index import build_index, build_service_context, change_prompts, load_documents

st.title("SAIRA: Student Affairs AI Response Assistant")
st.caption('Welcome to the SAIRA chatbot! This bot have knowledge about Innopolis University. Feel free to write your request!')

@st.cache_resource
def load_docs_and_build_index():
    service_context = build_service_context()
    docs = load_documents()
    index = build_index(docs, service_context)
    query_engine = index.as_query_engine(streaming=True)
    change_prompts(query_engine)
    return query_engine


# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("What is up?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        resp = query_engine.query(prompt)
        message_placeholder = st.empty()
        full_response = ""
        # Simulate stream of response with milliseconds delay
        for text in resp.response_gen:
            full_response += text
            # Add a blinking cursor to simulate typing
            message_placeholder.markdown(full_response + "▌")
        message_placeholder.markdown(full_response)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": full_response})