File size: 11,681 Bytes
48e7c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550







BSc: Introduction To Big Data
=============================






Contents
--------


* [1 Introduction to Big Data](#Introduction_to_Big_Data)
	+ [1.1 Short Description](#Short_Description)
	+ [1.2 Prerequisites](#Prerequisites)
		- [1.2.1 Prerequisite subjects](#Prerequisite_subjects)
		- [1.2.2 Prerequisite topics](#Prerequisite_topics)
	+ [1.3 Course Topics](#Course_Topics)
	+ [1.4 Intended Learning Outcomes (ILOs)](#Intended_Learning_Outcomes_.28ILOs.29)
		- [1.4.1 What is the main purpose of this course?](#What_is_the_main_purpose_of_this_course.3F)
		- [1.4.2 ILOs defined at three levels](#ILOs_defined_at_three_levels)
			* [1.4.2.1 Level 1: What concepts should a student know/remember/explain?](#Level_1:_What_concepts_should_a_student_know.2Fremember.2Fexplain.3F)
			* [1.4.2.2 Level 2: What basic practical skills should a student be able to perform?](#Level_2:_What_basic_practical_skills_should_a_student_be_able_to_perform.3F)
			* [1.4.2.3 Level 3: What complex comprehensive skills should a student be able to apply in real-life scenarios?](#Level_3:_What_complex_comprehensive_skills_should_a_student_be_able_to_apply_in_real-life_scenarios.3F)
	+ [1.5 Grading](#Grading)
		- [1.5.1 Course grading range](#Course_grading_range)
		- [1.5.2 Course activities and grading breakdown](#Course_activities_and_grading_breakdown)
		- [1.5.3 Recommendations for students on how to succeed in the course](#Recommendations_for_students_on_how_to_succeed_in_the_course)
	+ [1.6 Resources, literature and reference materials](#Resources.2C_literature_and_reference_materials)
		- [1.6.1 Open access resources](#Open_access_resources)
		- [1.6.2 Closed access resources](#Closed_access_resources)
		- [1.6.3 Software and tools used within the course](#Software_and_tools_used_within_the_course)
* [2 Teaching Methodology: Methods, techniques, & activities](#Teaching_Methodology:_Methods.2C_techniques.2C_.26_activities)
	+ [2.1 Activities and Teaching Methods](#Activities_and_Teaching_Methods)
	+ [2.2 Formative Assessment and Course Activities](#Formative_Assessment_and_Course_Activities)
		- [2.2.1 Ongoing performance assessment](#Ongoing_performance_assessment)
			* [2.2.1.1 Section 1](#Section_1)
			* [2.2.1.2 Section 2](#Section_2)
			* [2.2.1.3 Section 3](#Section_3)
			* [2.2.1.4 Section 4](#Section_4)
			* [2.2.1.5 Section 5](#Section_5)
			* [2.2.1.6 Section 6](#Section_6)
			* [2.2.1.7 Section 7](#Section_7)
		- [2.2.2 Final assessment](#Final_assessment)
		- [2.2.3 The retake exam](#The_retake_exam)



Introduction to Big Data
========================


* **Course name**: Introduction to Big Data
* **Code discipline**: N/A
* **Subject area**:


Short Description
-----------------


This course covers the following concepts: Distributed data organization; Distributed data processing.



Prerequisites
-------------


### Prerequisite subjects


### Prerequisite topics


Course Topics
-------------




Course Sections and Topics
| Section | Topics within the section
 |
| --- | --- |
| Introduction | 1. What is Big Data
2. Characteristics of Big Data
3. Data Structures
4. Types of Analytics
 |
| Hadoop | 1. Data storage
2. Clustering
3. Design decisions
4. Scaling
5. Distributed systems
6. The ecosystem
 |
| HDFS | 1. Distributed storage
2. Types of nodes
3. Files and blocks
4. Replication
5. Memory usage
 |
| MapReduce | 1. Distributed processing
2. MapReduce model
3. Applications
4. Tasks management
5. Patterns
 |
| YARN | 1. Resource manager
2. Components
3. Run an application
4. Schedules
 |
| Optimizing Data Processing | 1. CAP theorem
2. Distributed storage and computation
3. Batch Processing
4. Stream Processing
5. Usage patterns
6. NoSQL databases
 |
| Spark | 1. Architecture
2. Use cases
3. Job scheduling
4. Data types
5. SparkML
6. GraphX
 |


Intended Learning Outcomes (ILOs)
---------------------------------


### What is the main purpose of this course?


Software systems are increasingly based on large amount of data that come from a wide range of sources (e.g., logs, sensors, user-generated content, etc.). However, data are useful only if it can be analyzed properly to extract meaningful information can be used (e.g., to take decisions, to make predictions, etc.). This course provides an overview of the state-of-the-art technologies, tools, architectures, and systems constituting the big data computing solutions landscape. Particular attention will be given to the Hadoop ecosystem that is widely adopted in the industry.



### ILOs defined at three levels


#### Level 1: What concepts should a student know/remember/explain?


By the end of the course, the students should be able to ...



* The most common structures of distributed storage.
* Batch processing techniques
* Stream processing techniques
* Basic distributed data processing algorithms
* Basic tools to address specific processing needs


#### Level 2: What basic practical skills should a student be able to perform?


By the end of the course, the students should be able to ...



* The basis of the CAP theorem
* The structure of the MapReduce
* How to process batch data
* How to process stream data
* The characteristics of a NoSQL database


#### Level 3: What complex comprehensive skills should a student be able to apply in real-life scenarios?


By the end of the course, the students should be able to ...



* Use a NoSQL database
* Write a program for batch processing
* Write a program for stream processing


Grading
-------


### Course grading range





| Grade | Range | Description of performance
 |
| --- | --- | --- |
| A. Excellent | 90-100 | -
 |
| B. Good | 75-89 | -
 |
| C. Satisfactory | 60-74 | -
 |
| D. Poor | 0-59 | -
 |


### Course activities and grading breakdown





| Activity Type | Percentage of the overall course grade
 |
| --- | --- |
| Labs/seminar classes | 30
 |
| Interim performance assessment | 30
 |
| Exams | 40
 |


### Recommendations for students on how to succeed in the course


Resources, literature and reference materials
---------------------------------------------


### Open access resources


* Slides and material provided during the course.
* Vignesh Prajapati. Big Data Analytics with R and Hadoop. Packt Publishing, 2013
* Jules J. Berman. Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2013


### Closed access resources


### Software and tools used within the course


Teaching Methodology: Methods, techniques, & activities
=======================================================


Activities and Teaching Methods
-------------------------------




Activities within each section
| Learning Activities | Section 1 | Section 2 | Section 3 | Section 4 | Section 5 | Section 6 | Section 7
 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| Testing (written or computer based) | 1 | 1 | 1 | 1 | 1 | 1 | 1
 |
| Discussions | 1 | 1 | 1 | 1 | 1 | 1 | 1
 |
| Development of individual parts of software product code | 0 | 0 | 1 | 1 | 1 | 1 | 1
 |
| Homework and group projects | 0 | 0 | 1 | 1 | 1 | 1 | 1
 |
| Midterm evaluation | 0 | 0 | 1 | 1 | 1 | 1 | 1
 |


Formative Assessment and Course Activities
------------------------------------------


### Ongoing performance assessment


#### Section 1





| Activity Type | Content | Is Graded?
 |
| --- | --- | --- |
| Question | Describe the 6 Vs | 1
 |
| Question | Describe the types of analytics | 1
 |
| Question | Design the structure of a DB to address a specific analytics type | 0
 |
| Question | Give examples of the 6 Vs in real systems | 0
 |


#### Section 2





| Activity Type | Content | Is Graded?
 |
| --- | --- | --- |
| Question | Describe the Hadoop ecosystem | 1
 |
| Question | Structure of an Hadoop cluster | 1
 |
| Question | Describe the scaling techniques | 1
 |
| Question | Configure a basic Hadoop node | 0
 |
| Question | Configure a basic Hadoop cluster | 0
 |


#### Section 3





| Activity Type | Content | Is Graded?
 |
| --- | --- | --- |
| Question | Describe the characteristics of the different nodes | 1
 |
| Question | How files and blocks are managed | 1
 |
| Question | How memory is managed | 1
 |
| Question | How replication works | 1
 |
| Question | Configure a HDFS cluster | 0
 |
| Question | Configure different replication approaches | 0
 |
| Question | Build a HDFS client | 0
 |
| Question | Use a HDFS command line | 0
 |


#### Section 4





| Activity Type | Content | Is Graded?
 |
| --- | --- | --- |
| Question | Describe the MapReduce model | 1
 |
| Question | Describe tasks management | 1
 |
| Question | Describe patterns of usage | 1
 |
| Question | Solve with MapReduce a specific problem | 0
 |
| Question | Implement a usage pattern | 0
 |


#### Section 5





| Activity Type | Content | Is Graded?
 |
| --- | --- | --- |
| Question | Describe the resource manager | 1
 |
| Question | Describe the lifecycle of an application | 1
 |
| Question | Describe and compare the scheduling approaches | 1
 |
| Question | Compare the performance of the different schedules in different load conditions | 0
 |
| Question | Configure YARN | 0
 |
| Question | Evaluate the overall performance of YARN | 0
 |


#### Section 6





| Activity Type | Content | Is Graded?
 |
| --- | --- | --- |
| Question | Analyze the CAP theorem | 1
 |
| Question | Define the kinds of data storage available | 1
 |
| Question | Characteristics of batch processing | 1
 |
| Question | Characteristics of stream processing | 1
 |
| Question | Describe the usage patterns | 1
 |
| Question | Compare NoSQL databases | 1
 |
| Question | Build a program to solve a problem with batch processing | 0
 |
| Question | Build a program to solve a problem with stream processing | 0
 |
| Question | Interact with a NoSQL database | 0
 |


#### Section 7





| Activity Type | Content | Is Graded?
 |
| --- | --- | --- |
| Question | Describe the architecture of Spark | 1
 |
| Question | Describe the types of schedulers | 1
 |
| Question | Different characteristics of the data types | 1
 |
| Question | Features of SparkML | 1
 |
| Question | Features of GraphX | 1
 |
| Question | Analyze the performance of different schedulers | 0
 |
| Question | Write a program exploiting the features of each data type | 0
 |
| Question | Write a program using SparkML | 0
 |
| Question | Write a program using GraphX | 0
 |


### Final assessment


**Section 1**



1. Design the structure of a DB to address a specific analytics type
2. Give examples of the 6 Vs in real systems


**Section 2**



1. Identify the Hadoop components useful to address a specific problem.
2. Configure an multi-node Hadoop system.


**Section 3**



1. Configure a HDFS cluster with some specific replication approaches
2. Build a HDFS client


**Section 4**



1. Describe the advantages and disadvantages of the MapReduce model
2. Solve a task designing the solution using MapReduce
3. Solve a task designing the solution using a composition of usage patterns


**Section 5**



1. Evaluate the performance of a specific configuration
2. Compare the different schedules


**Section 6**



1. Identify problems and solutions related to the CAP theorem
2. Compare solutions with batch and stream processing approaches
3. Design a system using a NoSQL database


**Section 7**



1. Compare the performance of different schedules with different loads
2. Extend the SparkML library with a custom algorithm
3. Extend the GraphX library with a custom algorithm


### The retake exam


**Section 1**


**Section 2**


**Section 3**


**Section 4**


**Section 5**


**Section 6**


**Section 7**