Spaces:
Sleeping
Sleeping
File size: 1,958 Bytes
b87de8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import streamlit as st
import random
import time
from index import build_index, build_service_context
from loader import load_documents
st.title("SAIRA")
def load_docs_and_build_index(context):
docs = load_documents()
return build_index(docs, context)
def load_context():
return build_service_context()
context = load_context()
index = load_docs_and_build_index(context)
query_engine = index.as_query_engine(streaming=True)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
resp = query_engine.query(prompt)
message_placeholder = st.empty()
full_response = ""
assistant_response = random.choice(
[
"Hello there! How can I assist you today?",
"Hi, human! Is there anything I can help you with?",
"Do you need help?",
]
)
# Simulate stream of response with milliseconds delay
for text in resp.response_gen:
full_response += text
# Add a blinking cursor to simulate typing
message_placeholder.markdown(full_response + "▌")
message_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response}) |