File size: 13,286 Bytes
4835f75 be3048f 4835f75 be3048f 4835f75 be3048f 4835f75 be3048f 4835f75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import json
import numpy as np
import drawsvg as draw
import colorsys
import tempfile, os
def filter_time(e, start, end):
# return e["start_time"] >= start and (end is None or e["completion_time"] <= end)
# Check completion_time here to include the last long W
return e.completion_time >= start and (end is None or e.completion_time <= end)
def load_json_data(filename, start=0, end=None, time_scale=1):
with open(filename) as f:
data = json.loads(f.read())
fbw_types = {"F", "B", "W", "Optimizer"}
return [[{
"type": e["type"],
"start_time": int(max(e["start_time"] - start, 0)) * time_scale,
"completion_time": int(e["completion_time"] - start) * time_scale,
"minibatch": e.get("minibatch", None),
} for e in dev_evs
if e["type"] in fbw_types and filter_time(e, start, end)
] for dev_evs in data]
ENABLE_BORDER = True
ENABLE_BATCH_ID = True
ENABLE_EDGE_BLUR = False
SCALE_FACTOR = 2
S = SCALE_FACTOR
# TIME_PER_UNIT = 300 // SCALE_FACTOR
TIME_PER_UNIT = 4000 // SCALE_FACTOR
def to_color_fmt(c):
# c = to_greyscale(c)
return f"#{hex(c[0])[2:]}{hex(c[1])[2:]}{hex(c[2])[2:]}"
GREYSCALE_WEIGHTS = np.array([0.299, 0.587, 0.114])
def to_greyscale(color):
c = np.dot(GREYSCALE_WEIGHTS, color[:3].astype(float)).astype(int)
return np.array([c, c, c, 255])
COLOR_VALUE_MAP = {
"F": np.array([57, 122, 242]),
"B": np.array([62, 181, 191]),
# "B": np.array([68, 211, 218]), # sea color
# "W": to_color_fmt(np.array([47, 158, 73, 255])),
"W": np.array([41, 137, 64]),
# "W": np.array([224, 240, 231]), # sea color
# "Optimizer": to_color_fmt(np.array([255, 240, 197, 255])),
"Optimizer": np.array([255, 217, 102]),
}
COLOR_MAP = {k: to_color_fmt(v) for k, v in COLOR_VALUE_MAP.items()}
# BORDER_SIZE = SCALE_FACTOR // 2
BORDER_SIZE = 1
SPAN_HEIGHT = SCALE_FACTOR * 10
FONT_SIZE = SCALE_FACTOR * 10
TITLE_WIDTH = SCALE_FACTOR * 60
CENTER_TITLE_HEIGHT = SPAN_HEIGHT * 6
WHITE = to_color_fmt(np.array([255, 255, 255, 255]))
BLACK = to_color_fmt(np.array([0, 0, 0, 255]))
class DrawCtx:
def __init__(self, d, oy, ox):
assert not isinstance(d, DrawCtx)
self.d = d
self.oy = oy
self.ox = ox
@classmethod
def from_base_ctx(cls, base_ctx, oy, ox):
assert isinstance(base_ctx, DrawCtx)
return cls(base_ctx.d, base_ctx.oy + oy, base_ctx.ox + ox)
def width(self):
return self.d.width
def height(self):
return self.d.height
def line(self, sy, sx, ey, ex, width=None):
self.d.append(draw.Line(
self.ox + sx,
self.oy + sy,
self.ox + ex,
self.oy + ey,
stroke='black',
stroke_width=width or BORDER_SIZE,
))
def rect(self, sy, sx, h, w, color):
self.d.append(draw.Rectangle(
self.ox + sx,
self.oy + sy,
w, h,
fill=color,
shape_rendering="geometricPrecision",
))
def rect_frame(self, sy, sx, h, w):
self.d.append(draw.Rectangle(
self.ox + sx,
self.oy + sy,
w, h,
fill="none",
stroke=BLACK,
stroke_width=BORDER_SIZE,
))
def text(self, y, x, text, anchor="middle", font_scale=1, fill='black'):
font_size = FONT_SIZE * font_scale
tl = len(text) * font_size // 2
self.d.append(draw.Text(
text, font_size,
self.ox + x,
# Magic 3 to make it vertical center
self.oy + y + font_size - 3,
textLength=tl, lengthAdjust='spacing',
text_anchor=anchor,
font_family="Times New Roman",
fill=fill,
# font_style="oblique",
# font_family="Computer Modern Roman",
))
def change_color_sat(c, percentage):
c = c.astype(float) / 255.0
(h, s, v) = colorsys.rgb_to_hsv(c[0], c[1], c[2])
s *= percentage
r, g, b = colorsys.hsv_to_rgb(h, s, v)
c = np.array([r, g, b]) * 255
return c.astype(int)
def draw_experiment_and_schedule(exp_events, sched_events, output_filename, tail=10):
exp_canvas_info = CanvasInfo(exp_events, tail, 0)
sched_canvas_info = CanvasInfo(sched_events, tail, 0, False)
width = max(exp_canvas_info.get_canvas_size()[1], sched_canvas_info.get_canvas_size()[1])
height = exp_canvas_info.get_canvas_size()[0] + sched_canvas_info.get_canvas_size()[0]
include_w = True
# d = draw.Drawing(width, sched_canvas_info.get_canvas_size()[0], origin="top-left")
d = draw.Drawing(width, height, origin="top-left")
ctx = DrawCtx(d, 0, 0)
plot_events(ctx, sched_events, "", sched_canvas_info, include_w, include_o=False, include_info=False)
# plot_events(ctx, sched_events, "", sched_canvas_info, include_w, include_o=False)
# d.save_svg("pics/schedule.svg")
# d = draw.Drawing(width, sched_canvas_info.get_canvas_size()[0], origin="top-left")
# exp_ctx = DrawCtx(d, 0, 0)
exp_ctx = DrawCtx.from_base_ctx(ctx, sched_canvas_info.get_canvas_size()[0], 0)
plot_events(exp_ctx, exp_events, "", exp_canvas_info, include_w, include_o=True)
# plot_events(exp_ctx, exp_events, "", exp_canvas_info, include_w, include_o=True)
d.save_svg(output_filename)
def draw_events(events, output_filename, include_w=True, include_o=True, tail=50, longest_time=None):
canvas_info = CanvasInfo(events, tail, center_title_height=0, enable_info=True, longest_time=longest_time)
max_len = canvas_info.max_len
# height = canvas_info.height
# info_height = canvas_info.info_height
height, width = canvas_info.get_canvas_size()
d = draw.Drawing(width, height, origin="top-left")
ctx = DrawCtx(d, 0, 0)
plot_events(ctx, events, "", canvas_info, include_w, include_o)
d.save_svg(output_filename)
class CanvasInfo:
def __init__(self, events, tail, center_title_height=CENTER_TITLE_HEIGHT, enable_info=True, longest_time=None):
last_time = max(max([e["completion_time"] for e in dev_evs]) for dev_evs in events) if longest_time is None else longest_time
self.max_len = (last_time + TIME_PER_UNIT - 1) // TIME_PER_UNIT + tail
self.height = SPAN_HEIGHT * len(events) + BORDER_SIZE * (len(events) + 1)
color_text_row_height = int(SPAN_HEIGHT * 1.6)
self.color_text_height = color_text_row_height + BORDER_SIZE
self.info_height = SPAN_HEIGHT + color_text_row_height + 3 * BORDER_SIZE
if not enable_info:
self.info_height /= 2
self.center_title_height = center_title_height
# self.center_title_height = 0
def get_canvas_size(self):
# height, width
return self.height + self.info_height + self.center_title_height, self.max_len + TITLE_WIDTH
def plot_events(ctx, events, title_text: str, canvas_info: CanvasInfo, include_w=True, include_o=True, include_info=True):
max_len = canvas_info.max_len
height = canvas_info.height
color_text_height = canvas_info.color_text_height
info_height = canvas_info.info_height
data_ctx = DrawCtx.from_base_ctx(ctx, 0, TITLE_WIDTH)
for i, evs in enumerate(events):
h = i * SPAN_HEIGHT + (i + 1) * BORDER_SIZE
for e in evs:
start = BORDER_SIZE + e["start_time"] // TIME_PER_UNIT
end = BORDER_SIZE + e["completion_time"] // TIME_PER_UNIT
if start == end or not ENABLE_EDGE_BLUR:
plot_span(data_ctx, start, end, h, COLOR_MAP[e["type"]])
else:
plot_span(data_ctx, start + 1, end - 1, h, COLOR_MAP[e["type"]])
# plot_span(data_ctx, start, end - 1, h, COLOR_MAP[e["type"]])
c = change_color_sat(
COLOR_VALUE_MAP[e["type"]],
(e["start_time"] / TIME_PER_UNIT) % 1.0)
plot_span(data_ctx, start, start + 1, h, to_color_fmt(c))
c = change_color_sat(
COLOR_VALUE_MAP[e["type"]],
(e["completion_time"] / TIME_PER_UNIT) % 1.0)
plot_span(data_ctx, end - 1, end, h, to_color_fmt(c))
if ENABLE_BATCH_ID:
minibatch = str(e["minibatch"])
center = (start + end) // 2
data_ctx.text(h, center, minibatch, font_scale=0.6, fill='black' if e["chunk"] == 0 else 'white')
if ENABLE_BORDER:
data_ctx.line(h+SPAN_HEIGHT, 0, h+SPAN_HEIGHT+BORDER_SIZE, max_len - 1)
if ENABLE_BORDER:
data_ctx.line(0, 0, 0, max_len - 1)
data_ctx.line(0, 0, height, 0)
data_ctx.line(0, max_len - 1, height, max_len - 1)
dev_title_ctx = DrawCtx.from_base_ctx(ctx, 0, 0)
ndev = len(events)
add_devices(dev_title_ctx, ndev)
if not include_info:
return
info_height = ndev * SPAN_HEIGHT + (ndev + 1) * BORDER_SIZE
info_ctx = DrawCtx.from_base_ctx(ctx, info_height, 0)
add_info(info_ctx, color_text_height, include_w, include_o)
if title_text:
center_title_ctx = DrawCtx.from_base_ctx(info_ctx, canvas_info.info_height, 0)
add_center_title(center_title_ctx, title_text)
def plot_span(ctx, start, end, h, color, ):
ctx.rect(h, start, SPAN_HEIGHT, end - start, color)
if ENABLE_BORDER:
ctx.rect_frame(h-BORDER_SIZE, start, SPAN_HEIGHT + BORDER_SIZE, end - start)
def add_devices(ctx, devs):
for i in range(devs):
h = i * SPAN_HEIGHT + (i + 1) * BORDER_SIZE
ctx.text(h, 6 * SCALE_FACTOR, "Device {}".format(i), "left")
def add_info(ctx, color_text_height, include_w=True, include_o=True):
div = 4 + int(include_w) + int(include_o)
f_start = ctx.width() // div
b_start = ctx.width() // div * 2
w_start = ctx.width() // div * 3
o_start = ctx.width() // div * 4
block_w = 25 * SCALE_FACTOR
plot_span(ctx, f_start, f_start+block_w, color_text_height + BORDER_SIZE, COLOR_MAP["F"])
plot_span(ctx, b_start, b_start+block_w, color_text_height + BORDER_SIZE, COLOR_MAP["B"])
if include_w:
plot_span(ctx, w_start, w_start+block_w, color_text_height + BORDER_SIZE, COLOR_MAP["W"])
if include_o:
plot_span(ctx, o_start, o_start+block_w, color_text_height + BORDER_SIZE, COLOR_MAP["Optimizer"])
ctx.text(0, 6 * SCALE_FACTOR, "Time", "left")
draw_arrow(ctx, SPAN_HEIGHT // 2 + BORDER_SIZE + 1, 65 * SCALE_FACTOR, 50 * SCALE_FACTOR)
block_w = 30 * SCALE_FACTOR
ctx.text(color_text_height, f_start + block_w, "F", "left")
ctx.text(color_text_height, b_start + block_w,
"B", "left")
if include_w:
ctx.text(color_text_height, w_start + block_w, "W", "left")
if include_o:
ctx.text(color_text_height, o_start + block_w, "Optimizer Step", "left")
def add_center_title(ctx: DrawCtx, text):
ctx.text(CENTER_TITLE_HEIGHT / 4, ctx.width() / 2,
text, "middle", 2)
def draw_arrow(ctx: DrawCtx, start_y, start_x, width, thickness=2):
b = thickness * (SCALE_FACTOR // 2)
ctx.line(start_y, start_x, start_y, start_x + width, b)
ctx.line(start_y, start_x + width, start_y - 3*b, start_x + width - 3*b)
ctx.line(start_y, start_x + width, start_y + 3*b, start_x + width - 3*b)
def render_manual_graph(data, longest_time, enable_batch_id = False):
global ENABLE_BORDER
global ENABLE_BATCH_ID
ENABLE_BORDER = True
ENABLE_BATCH_ID = enable_batch_id
fbw_types = {"F", "B", "W", "Optimizer"}
start = 0
end = None
time_scale= 1024 / longest_time * TIME_PER_UNIT
events = [[{
"type": e.type,
"start_time": int(max(e.start_time - start, 0)) * time_scale,
"completion_time": int(e.completion_time - start) * time_scale,
"minibatch": e.minibatch,
"chunk": e.chunk if hasattr(e, "chunk") else 0,
} for e in dev_evs
if e.type in fbw_types and filter_time(e, start, end)
] for dev_evs in data]
# events = load_json_data("std-schedule.json")
# global TIME_PER_UNIT
# global ENABLE_BATCH_ID
# global ENABLE_BORDER
# global SCALE_FACTOR
# SCALE_FACTOR = 8
# ENABLE_BATCH_ID = False
# ENABLE_BORDER = False
# TIME_PER_UNIT *= 7
#events = load_json_data("no-bb-schedule.json")
path = os.path.join(tempfile.mkdtemp(), 'a.svg')
draw_events(events, path, include_w=True, include_o=False, tail=50, longest_time=longest_time * time_scale)
return path
def render_experiment_graph():
global ENABLE_BORDER
global ENABLE_BATCH_ID
global TIME_PER_UNIT
ENABLE_BORDER = False
ENABLE_BATCH_ID = False
TIME_PER_UNIT = 200 // SCALE_FACTOR
TIME_PER_UNIT *= 12000
start_time = 1100000000 + 10000000
# iter_time = 1600000000
iter_time = 1290000000
end_time = start_time + iter_time
exp_events = load_json_data("20-09-zero/zero-events.json", start_time, end_time)
# draw_events(events, "pics/experiment.svg")
sched_events = load_json_data("schedule.json", time_scale=1000)
draw_experiment_and_schedule(exp_events, sched_events, "pics/exp.svg")
# draw_events(events, "pics/schedule.svg", include_w=True, include_o=False)
# render_manual_graph()
# render_experiment_graph()
|