Spaces:
Sleeping
Sleeping
File size: 9,290 Bytes
1efd8a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor, VotingRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.neural_network import MLPRegressor
from lightgbm import LGBMRegressor
from xgboost import XGBRegressor
import math
st.title('Liver Disease Prediction Application')
st.write('''
Please fill in the attributes below, then hit the Predict button
to get your results.
''')
st.header('Input Attributes')
age = st.slider('Your Age (Years)', min_value=0.0, max_value=100.0, value=50.0, step=1.0)
st.write(''' ''')
gen = st.radio("Your Gender", ('Male', 'Female'))
st.write(''' ''')
tb = st.slider('Total Bilirubin (TB)', min_value=0.0, max_value=100.0, value=50.0, step=0.1)
st.write(''' ''')
db = st.slider('Direct Bilirubin (DB)', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
aap = st.slider('Alkphos Alkaline Phosphotase', min_value=0.0, max_value=2400.0, value=1200.0, step=1.0)
st.write(''' ''')
sgpt = st.slider('SGPT Alamine Aminotransferase', min_value=0.0, max_value=2400.0, value=1200.0, step=1.0)
st.write(''' ''')
sgot = st.slider('SGOT Aspartate Aminotransferase', min_value=0.0, max_value=5000.0, value=2500.0, step=1.0)
st.write(''' ''')
tp = st.slider('Total Protiens (TP)', min_value=0.0, max_value=10.0, value=5.0, step=0.1)
st.write(''' ''')
alb = st.slider('ALB Albumin', min_value=-0.0, max_value=10.0, value=5.0, step=0.1)
st.write(''' ''')
ag = st.slider('A/G Ratio Albumin and Globulin Ratio', min_value=0.0, max_value=10.0, value=5.0, step=0.1)
st.write(''' ''')
selected_models = st.multiselect("Choose Regressor Models", ('Random Forest',
'Linear Regression',
'K-Nearest Neighbors',
'Decision Tree',
'Support Vector Machine',
'Gradient Boosting Regression',
'XGBoost Regression',
'LightGBM Regression'))
st.write(''' ''')
# Initialize an empty list to store the selected models
models_to_run = []
# Check which models were selected and add them to the models_to_run list
if 'Random Forest' in selected_models:
models_to_run.append(RandomForestRegressor())
if 'Linear Regression' in selected_models:
models_to_run.append(LinearRegression())
if 'K-Nearest Neighbors' in selected_models:
models_to_run.append(KNeighborsRegressor())
if 'Decision Tree' in selected_models:
models_to_run.append(DecisionTreeRegressor())
if 'Support Vector Machine' in selected_models:
models_to_run.append(SVR())
if 'Gradient Boosting Regression' in selected_models:
models_to_run.append(GradientBoostingRegressor())
if 'XGBoost Regression' in selected_models:
models_to_run.append(XGBRegressor())
if 'LightGBM Regression' in selected_models:
models_to_run.append(LGBMRegressor())
if 'Neural Network (MLP) Regression' in selected_models:
models_to_run.append(MLPRegressor())
# gender conversion
if gen == "Male":
gender = 1
else:
gender = 0
user_input = np.array([age, gender, tb, db, aap, sgpt, sgot, tp,
alb, ag]).reshape(1, -1)
# import dataset
def get_dataset():
data = pd.read_csv('Liver.csv', encoding='unicode_escape')
# delete Nan value
data = data.dropna()
# Mapping 'Male' to 1 and 'Female' to 0 in the 'Gender of the patient' column
data['Gender of the patient'] = data['Gender of the patient'].map({'Male': 1, 'Female': 0})
# No liver disease then:=0 for having liver disease then:=1
data['Result'] = data['Result'].map({1: 1, 2: 0})
return data
def generate_model_labels(model_names):
model_labels = []
for name in model_names:
words = name.split()
if len(words) > 1:
# Multiple words, use initials
label = "".join(word[0] for word in words)
else:
# Single word, take the first 3 letters
label = name[:3]
model_labels.append(label)
return model_labels
if st.button('Submit'):
df = get_dataset()
# fix column names
df.columns = (["age", "gender", "tb", "db", "aap",
"sgpt", "sgot", "tp", "alb",
"ag", "result"])
# Split the dataset into train and test
X = df.drop('result', axis=1)
y = df['result']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1337)
# Create two columns to divide the screen
left_column, right_column = st.columns(2)
# Left column content
with left_column:
# Create a VotingRegressor with the selected models
ensemble = VotingRegressor(
estimators=[('rf', RandomForestRegressor()), ('xg', XGBRegressor()), ('dt', DecisionTreeRegressor())]
)
# Fit the voting regressor to the training data
ensemble.fit(X_train, y_train)
# Make predictions on the test set
ensemble_predictions = ensemble.predict(user_input)
# Evaluate the model's performance on the test set
ensemble_r2 = r2_score(y_test, ensemble.predict(X_test))
ensemble_mse = mean_squared_error(y_test, ensemble.predict(X_test))
ensemble_mae = mean_absolute_error(y_test, ensemble.predict(X_test))
ensemble_rmse = np.sqrt(ensemble_mse)
st.write(f'According to Ensemble Model, Your Liver Disease Risk Score is: {ensemble_predictions[0]:.1f}')
st.write('Ensemble Model R-squared (R2) Score:', ensemble_r2)
st.write('Ensemble Model Root Mean Squared Error (RMSE):', ensemble_rmse)
st.write('Ensemble Model Mean Squared Error (MSE):', ensemble_mse)
st.write('Ensemble Model Mean Absolute Error (MAE):', ensemble_mae)
st.write('------------------------------------------------------------------------------------------------------')
# Right column content
with right_column:
# Initialize lists to store model names and their respective performance metrics
model_names = ['Ensemble']
r2_scores = [ensemble_r2]
rmses = [ensemble_rmse]
mses = [ensemble_mse]
maes = [ensemble_mae]
for model in models_to_run:
# Train the selected model
model.fit(X_train, y_train)
# Make predictions on the test set
model_predictions = model.predict(user_input)
# Evaluate the model's performance on the test set
model_r2 = r2_score(y_test, model.predict(X_test))
model_mse = mean_squared_error(y_test, model.predict(X_test))
model_mae = mean_absolute_error(y_test, model.predict(X_test))
model_rmse = np.sqrt(model_mse)
st.write(f'According to {type(model).__name__} Model, Your Liver Disease Risk Score is: {model_predictions[0]:.2f}')
st.write(f'{type(model).__name__} Model R-squared (R2) Score:', model_r2)
st.write(f'{type(model).__name__} Model Root Mean Squared Error (RMSE):', model_rmse)
st.write(f'{type(model).__name__} Model Mean Squared Error (MSE):', model_mse)
st.write(f'{type(model).__name__} Model Mean Absolute Error (MAE):', model_mae)
st.write('------------------------------------------------------------------------------------------------------')
# Append model metrics to lists
model_names.append(type(model).__name__)
r2_scores.append(model_r2)
rmses.append(model_rmse)
mses.append(model_mse)
maes.append(model_mae)
# Create a DataFrame to store the performance metrics
metrics_df = pd.DataFrame({
'Model': model_names,
'R-squared (R2)': r2_scores,
'Root Mean Squared Error (RMSE)': rmses,
'Mean Squared Error (MSE)': mses,
'Mean Absolute Error (MAE)': maes
})
# Get the model labels
model_labels = generate_model_labels(metrics_df['Model'])
# Plot the comparison graphs
plt.figure(figsize=(12, 10))
# R-squared (R2) score comparison
plt.subplot(2, 2, 1)
plt.bar(model_labels, metrics_df['R-squared (R2)'], color='skyblue')
plt.title('R-squared (R2) Score Comparison')
plt.ylim(0, 1)
# Root Mean Squared Error (RMSE) comparison
plt.subplot(2, 2, 2)
plt.bar(model_labels, metrics_df['Root Mean Squared Error (RMSE)'], color='orange')
plt.title('Root Mean Squared Error (RMSE) Comparison')
# Mean Squared Error (MSE) comparison
plt.subplot(2, 2, 3)
plt.bar(model_labels, metrics_df['Mean Squared Error (MSE)'], color='green')
plt.title('Mean Squared Error (MSE) Comparison')
# Mean Absolute Error (MAE) comparison
plt.subplot(2, 2, 4)
plt.bar(model_labels, metrics_df['Mean Absolute Error (MAE)'], color='purple')
plt.title('Mean Absolute Error (MAE) Comparison')
# Adjust layout to prevent overlapping of titles
plt.tight_layout()
# Display the graphs in Streamlit
st.pyplot()
|