File size: 10,614 Bytes
7fa3b30
 
 
 
d6a735f
7fa3b30
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a735f
7fa3b30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a735f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa3b30
 
 
 
 
 
a6d54a9
7fa3b30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a735f
 
 
 
 
 
 
 
 
7fa3b30
 
 
d6a735f
 
 
 
 
7fa3b30
 
 
 
d6a735f
7fa3b30
 
 
 
d6a735f
 
 
 
7fa3b30
d6a735f
 
268d97f
 
d6a735f
268d97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa3b30
5b14f9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt


from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score


st.title('Diabetes Prediction Application')
st.write('''
         Please fill in the attributes below, then hit the Predict button
         to get your results. 
         ''')

st.header('Input Attributes')
age = st.slider('Your Age (Years)', min_value=0.0, max_value=100.0, value=50.0, step=1.0)
st.write(''' ''')
gen = st.radio("Your Gender", ('Male', 'Female'))
st.write(''' ''')
# gender conversion
if gen == "Male":
    gender = 1
else:
    gender = 0

urea = st.slider('Urea', min_value=0.0, max_value=100.0, value=50.0, step=0.1)
st.write(''' ''')
cr = st.slider('Creatinine Ratio(Cr)', min_value=0.0, max_value=1000.0, value=500.0, step=1.0)
st.write(''' ''')
hb = st.slider('HbA1c', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
chol = st.slider('Cholesterol (Chol)', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
tg = st.slider('Triglycerides(TG) Cholesterol', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
hdl = st.slider('HDL Cholesterol', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
ldl = st.slider('LDL Cholesterol', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
vldl = st.slider('VLDL Cholesterol', min_value=0.0, max_value=50.0, value=25.0, step=0.1)
st.write(''' ''')
bmi = st.slider('BMI', min_value=0.0, max_value=50.0, value=25.0, step=0.1)
st.write(''' ''')

selected_models = st.multiselect("Choose Classifier Models", ('Random Forest', 'Naïve Bayes', 'Logistic Regression', 'K-Nearest Neighbors', 'Decision Tree', 'Gradient Boosting', 'LightGBM', 'XGBoost', 'Multilayer Perceptron', 'Artificial Neural Network', 'Support Vector Machine'))
st.write(''' ''')

# Initialize an empty list to store the selected models
models_to_run = []

# Check which models were selected and add them to the models_to_run list
if 'Random Forest' in selected_models:
    models_to_run.append(RandomForestClassifier())

if 'Naïve Bayes' in selected_models:
    models_to_run.append(GaussianNB())

if 'Logistic Regression' in selected_models:
    models_to_run.append(LogisticRegression())

if 'K-Nearest Neighbors' in selected_models:
    models_to_run.append(KNeighborsClassifier())

if 'Decision Tree' in selected_models:
    models_to_run.append(DecisionTreeClassifier())

if 'Gradient Boosting' in selected_models:
    models_to_run.append(GradientBoostingClassifier())

if 'Support Vector Machine' in selected_models:
    models_to_run.append(SVC(probability=True))

if 'LightGBM' in selected_models:
    models_to_run.append(LGBMClassifier())

if 'XGBoost' in selected_models:
    models_to_run.append(XGBClassifier())

if 'Multilayer Perceptron' in selected_models:
    models_to_run.append(MLPClassifier())

if 'Artificial Neural Network' in selected_models:
    models_to_run.append(MLPClassifier(hidden_layer_sizes=(100,), max_iter=100))



user_input = np.array([age, gender, urea, cr, hb, chol, tg, hdl, vldl,
                       ldl, bmi]).reshape(1, -1)

# import dataset
def get_dataset():
    data = pd.read_csv('updated_diabetes.csv')
    # Transforming class into numerical format
    data['CLASS'] = data['CLASS'].apply(lambda x: 0 if x == 'N' else 1)

    # Transforming 	Gender into numerical format
    data['Gender'] = data['Gender'].apply(lambda x: 1 if x == 'M' else 0)

    # Calculate the correlation matrix
    # corr_matrix = data.corr()

    # Create a heatmap of the correlation matrix
    # plt.figure(figsize=(10, 8))
    # sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
    # plt.title('Correlation Matrix')
    # plt.xticks(rotation=45)
    # plt.yticks(rotation=0)
    # plt.tight_layout()

    # Display the heatmap in Streamlit
    # st.pyplot()

    return data

def generate_model_labels(model_names):
    model_labels = []
    for name in model_names:
        words = name.split()
        if len(words) > 1:
            # Multiple words, use initials
            label = "".join(word[0] for word in words)
        else:
            # Single word, take the first 3 letters
            label = name[:3]
        model_labels.append(label)
    return model_labels

if st.button('Submit'):
    df = get_dataset()

    # fix column names
    df.columns = (["id", "pation_no", "gender", "age", "urea", "cr",
                   "hb", "chol", "tg", "hdl", "ldl",
                   "vldl", "bmi", "target"])

    # Split the dataset into train and test
    X = df.drop(['target','id','pation_no'], axis=1)
    y = df['target']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # Create two columns to divide the screen
    left_column, right_column = st.columns(2)


    # Left column content
    with left_column:
        # Create a VotingClassifier with the top 3 models
        ensemble = VotingClassifier(
            estimators=[('rf', RandomForestClassifier()), ('xgb', XGBClassifier()), ('gb', LGBMClassifier())],
            voting='soft')

        # Fit the voting classifier to the training data
        ensemble.fit(X_train, y_train)

        # Make predictions on the test set
        model_predictions = ensemble.predict(user_input)
        model_prob = ensemble.predict_proba(user_input)[:, 1]

        # Evaluate the model's performance on the test set
        ensamble_accuracy = accuracy_score(y_test, ensemble.predict(X_test))
        ensamble_precision = precision_score(y_test, ensemble.predict(X_test))
        ensamble_recall = recall_score(y_test, ensemble.predict(X_test))
        ensamble_f1score = f1_score(y_test, ensemble.predict(X_test))

        if model_predictions == 1:
            st.write(f'According to Ensemble Model You have a **Very High Chance (1)** of Diabetes.')
            st.write(f'Diabetes Probability: ', (model_prob* 100))

        else:
            st.write(f'According to Ensemble Model You have a **Very Low Chance (0)** of Diabetes.')
            st.write(f'Diabetes Probability: ', (model_prob* 100))

        st.write('Ensemble Model Accuracy:', ensamble_accuracy)
        st.write('Ensemble Model Precision:', ensamble_precision)
        st.write('Ensemble Model Recall:', ensamble_recall)
        st.write('Ensemble Model F1 Score:', ensamble_f1score)
        st.write('------------------------------------------------------------------------------------------------------')


    # Right column content
    with right_column:

        for model in models_to_run:
            # Train the selected model
            model.fit(X_train, y_train)

            # Make predictions on the test set
            model_predictions = model.predict(user_input)
            model_prob = model.predict_proba(user_input)[:, 1]

            # Evaluate the model's performance on the test set
            model_accuracy = accuracy_score(y_test, model.predict(X_test))
            model_precision = precision_score(y_test, model.predict(X_test))
            model_recall = recall_score(y_test, model.predict(X_test))
            model_f1score = f1_score(y_test, model.predict(X_test))

            if model_predictions == 1:
                st.write(f'According to {type(model).__name__} Model You have a **Very High Chance (1)** of Diabetes.')
                st.write(f'Diabetes Probability: ', (model_prob* 100))

            else:
                st.write(f'According to {type(model).__name__} Model You have a **Very Low Chance (0)** of Diabetes.')
                st.write(f'Diabetes Probability: ', (model_prob* 100))

            st.write(f'{type(model).__name__} Accuracy:', model_accuracy)
            st.write(f'{type(model).__name__} Precision:', model_precision)
            st.write(f'{type(model).__name__} Recall:', model_recall)
            st.write(f'{type(model).__name__} F1 Score:', model_f1score)
            st.write('------------------------------------------------------------------------------------------------------')

    # Initialize lists to store model names and their respective performance metrics
    model_names = ['Ensemble']
    accuracies = [ensamble_accuracy]
    precisions = [ensamble_precision]
    recalls = [ensamble_recall]
    f1_scores = [ensamble_f1score]

    # Loop through the selected models to compute their performance metrics
    for model in models_to_run:
        model_names.append(type(model).__name__)
        model.fit(X_train, y_train)
        model_predictions = model.predict(X_test)
        accuracies.append(accuracy_score(y_test, model_predictions))
        precisions.append(precision_score(y_test, model_predictions))
        recalls.append(recall_score(y_test, model_predictions))
        f1_scores.append(f1_score(y_test, model_predictions))

    # Create a DataFrame to store the performance metrics
    metrics_df = pd.DataFrame({
        'Model': model_names,
        'Accuracy': accuracies,
        'Precision': precisions,
        'Recall': recalls,
        'F1 Score': f1_scores
    })

    # Get the model labels
    model_labels = generate_model_labels(metrics_df['Model'])

    # Plot the comparison graphs
    plt.figure(figsize=(12, 10))

    # Accuracy comparison
    plt.subplot(2, 2, 1)
    plt.bar(model_labels, metrics_df['Accuracy'], color='skyblue')
    plt.title('Accuracy Comparison')
    plt.ylim(0, 1)

    # Precision comparison
    plt.subplot(2, 2, 2)
    plt.bar(model_labels, metrics_df['Precision'], color='orange')
    plt.title('Precision Comparison')
    plt.ylim(0, 1)

    # Recall comparison
    plt.subplot(2, 2, 3)
    plt.bar(model_labels, metrics_df['Recall'], color='green')
    plt.title('Recall Comparison')
    plt.ylim(0, 1)

    # F1 Score comparison
    plt.subplot(2, 2, 4)
    plt.bar(model_labels, metrics_df['F1 Score'], color='purple')
    plt.title('F1 Score Comparison')
    plt.ylim(0, 1)

    # Adjust layout to prevent overlapping of titles
    plt.tight_layout()

    # Display the graphs in Streamlit
    st.pyplot()