Spaces:
Runtime error
Runtime error
File size: 8,500 Bytes
36173e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
from collections import Counter
from functools import partial
import numpy as np
import pandas as pd
import scipy.sparse
import torch
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import MACCSkeys
from rdkit.Chem.AllChem import GetMorganFingerprintAsBitVect as Morgan
from rdkit.Chem.QED import qed
from rdkit.Chem.Scaffolds import MurckoScaffold
from rdkit.Chem import Descriptors
from moses.metrics.SA_Score import sascorer
from moses.metrics.NP_Score import npscorer
from moses.utils import mapper, get_mol
_base_dir = os.path.split(__file__)[0]
_mcf = pd.read_csv(os.path.join(_base_dir, 'mcf.csv'))
_pains = pd.read_csv(os.path.join(_base_dir, 'wehi_pains.csv'),
names=['smarts', 'names'])
_filters = [Chem.MolFromSmarts(x) for x in
_mcf.append(_pains, sort=True)['smarts'].values]
def canonic_smiles(smiles_or_mol):
mol = get_mol(smiles_or_mol)
if mol is None:
return None
return Chem.MolToSmiles(mol)
def logP(mol):
"""
Computes RDKit's logP
"""
return Chem.Crippen.MolLogP(mol)
def SA(mol):
"""
Computes RDKit's Synthetic Accessibility score
"""
return sascorer.calculateScore(mol)
def NP(mol):
"""
Computes RDKit's Natural Product-likeness score
"""
return npscorer.scoreMol(mol)
def QED(mol):
"""
Computes RDKit's QED score
"""
return qed(mol)
def weight(mol):
"""
Computes molecular weight for given molecule.
Returns float,
"""
return Descriptors.MolWt(mol)
def get_n_rings(mol):
"""
Computes the number of rings in a molecule
"""
return mol.GetRingInfo().NumRings()
def fragmenter(mol):
"""
fragment mol using BRICS and return smiles list
"""
fgs = AllChem.FragmentOnBRICSBonds(get_mol(mol))
fgs_smi = Chem.MolToSmiles(fgs).split(".")
return fgs_smi
def compute_fragments(mol_list, n_jobs=1):
"""
fragment list of mols using BRICS and return smiles list
"""
fragments = Counter()
for mol_frag in mapper(n_jobs)(fragmenter, mol_list):
fragments.update(mol_frag)
return fragments
def compute_scaffolds(mol_list, n_jobs=1, min_rings=2):
"""
Extracts a scafold from a molecule in a form of a canonic SMILES
"""
scaffolds = Counter()
map_ = mapper(n_jobs)
scaffolds = Counter(
map_(partial(compute_scaffold, min_rings=min_rings), mol_list))
if None in scaffolds:
scaffolds.pop(None)
return scaffolds
def compute_scaffold(mol, min_rings=2):
mol = get_mol(mol)
try:
scaffold = MurckoScaffold.GetScaffoldForMol(mol)
except (ValueError, RuntimeError):
return None
n_rings = get_n_rings(scaffold)
scaffold_smiles = Chem.MolToSmiles(scaffold)
if scaffold_smiles == '' or n_rings < min_rings:
return None
return scaffold_smiles
def average_agg_tanimoto(stock_vecs, gen_vecs,
batch_size=5000, agg='max',
device='cpu', p=1):
"""
For each molecule in gen_vecs finds closest molecule in stock_vecs.
Returns average tanimoto score for between these molecules
Parameters:
stock_vecs: numpy array <n_vectors x dim>
gen_vecs: numpy array <n_vectors' x dim>
agg: max or mean
p: power for averaging: (mean x^p)^(1/p)
"""
assert agg in ['max', 'mean'], "Can aggregate only max or mean"
agg_tanimoto = np.zeros(len(gen_vecs))
total = np.zeros(len(gen_vecs))
for j in range(0, stock_vecs.shape[0], batch_size):
x_stock = torch.tensor(stock_vecs[j:j + batch_size]).to(device).float()
for i in range(0, gen_vecs.shape[0], batch_size):
y_gen = torch.tensor(gen_vecs[i:i + batch_size]).to(device).float()
y_gen = y_gen.transpose(0, 1)
tp = torch.mm(x_stock, y_gen)
jac = (tp / (x_stock.sum(1, keepdim=True) +
y_gen.sum(0, keepdim=True) - tp)).cpu().numpy()
jac[np.isnan(jac)] = 1
if p != 1:
jac = jac**p
if agg == 'max':
agg_tanimoto[i:i + y_gen.shape[1]] = np.maximum(
agg_tanimoto[i:i + y_gen.shape[1]], jac.max(0))
elif agg == 'mean':
agg_tanimoto[i:i + y_gen.shape[1]] += jac.sum(0)
total[i:i + y_gen.shape[1]] += jac.shape[0]
if agg == 'mean':
agg_tanimoto /= total
if p != 1:
agg_tanimoto = (agg_tanimoto)**(1/p)
return np.mean(agg_tanimoto)
def fingerprint(smiles_or_mol, fp_type='maccs', dtype=None, morgan__r=2,
morgan__n=1024, *args, **kwargs):
"""
Generates fingerprint for SMILES
If smiles is invalid, returns None
Returns numpy array of fingerprint bits
Parameters:
smiles: SMILES string
type: type of fingerprint: [MACCS|morgan]
dtype: if not None, specifies the dtype of returned array
"""
fp_type = fp_type.lower()
molecule = get_mol(smiles_or_mol, *args, **kwargs)
if molecule is None:
return None
if fp_type == 'maccs':
keys = MACCSkeys.GenMACCSKeys(molecule)
keys = np.array(keys.GetOnBits())
fingerprint = np.zeros(166, dtype='uint8')
if len(keys) != 0:
fingerprint[keys - 1] = 1 # We drop 0-th key that is always zero
elif fp_type == 'morgan':
fingerprint = np.asarray(Morgan(molecule, morgan__r, nBits=morgan__n),
dtype='uint8')
else:
raise ValueError("Unknown fingerprint type {}".format(fp_type))
if dtype is not None:
fingerprint = fingerprint.astype(dtype)
return fingerprint
def fingerprints(smiles_mols_array, n_jobs=1, already_unique=False, *args,
**kwargs):
'''
Computes fingerprints of smiles np.array/list/pd.Series with n_jobs workers
e.g.fingerprints(smiles_mols_array, type='morgan', n_jobs=10)
Inserts np.NaN to rows corresponding to incorrect smiles.
IMPORTANT: if there is at least one np.NaN, the dtype would be float
Parameters:
smiles_mols_array: list/array/pd.Series of smiles or already computed
RDKit molecules
n_jobs: number of parralel workers to execute
already_unique: flag for performance reasons, if smiles array is big
and already unique. Its value is set to True if smiles_mols_array
contain RDKit molecules already.
'''
if isinstance(smiles_mols_array, pd.Series):
smiles_mols_array = smiles_mols_array.values
else:
smiles_mols_array = np.asarray(smiles_mols_array)
if not isinstance(smiles_mols_array[0], str):
already_unique = True
if not already_unique:
smiles_mols_array, inv_index = np.unique(smiles_mols_array,
return_inverse=True)
fps = mapper(n_jobs)(
partial(fingerprint, *args, **kwargs), smiles_mols_array
)
length = 1
for fp in fps:
if fp is not None:
length = fp.shape[-1]
first_fp = fp
break
fps = [fp if fp is not None else np.array([np.NaN]).repeat(length)[None, :]
for fp in fps]
if scipy.sparse.issparse(first_fp):
fps = scipy.sparse.vstack(fps).tocsr()
else:
fps = np.vstack(fps)
if not already_unique:
return fps[inv_index]
return fps
def mol_passes_filters(mol,
allowed=None,
isomericSmiles=False):
"""
Checks if mol
* passes MCF and PAINS filters,
* has only allowed atoms
* is not charged
"""
allowed = allowed or {'C', 'N', 'S', 'O', 'F', 'Cl', 'Br', 'H'}
mol = get_mol(mol)
if mol is None:
return False
ring_info = mol.GetRingInfo()
if ring_info.NumRings() != 0 and any(
len(x) >= 8 for x in ring_info.AtomRings()
):
return False
h_mol = Chem.AddHs(mol)
if any(atom.GetFormalCharge() != 0 for atom in mol.GetAtoms()):
return False
if any(atom.GetSymbol() not in allowed for atom in mol.GetAtoms()):
return False
if any(h_mol.HasSubstructMatch(smarts) for smarts in _filters):
return False
smiles = Chem.MolToSmiles(mol, isomericSmiles=isomericSmiles)
if smiles is None or len(smiles) == 0:
return False
if Chem.MolFromSmiles(smiles) is None:
return False
return True
|