Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,572 Bytes
aab55b1 9b87d5a 5680f2a aab55b1 dc2d01b aab55b1 5680f2a aab55b1 5680f2a aab55b1 8870220 aab55b1 8870220 aab55b1 8870220 aab55b1 8870220 9b87d5a aab55b1 9b87d5a aab55b1 9b87d5a aab55b1 9b87d5a 8870220 9b87d5a 8870220 9b87d5a aab55b1 9b87d5a aab55b1 9b87d5a aab55b1 9b87d5a aab55b1 9b87d5a aab55b1 9b87d5a aab55b1 9b87d5a aab55b1 9b87d5a aab55b1 8870220 aab55b1 8870220 aab55b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import torch
import numpy as np
import gradio as gr
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from sam2.build_sam import build_sam2_video_predictor, build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
import cv2
import traceback
import matplotlib.pyplot as plt
import ffmpeg
from utils import load_model_without_flash_attn
# CUDA optimizations
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Initialize models
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
image_predictor = SAM2ImagePredictor(sam2_model)
model_id = 'microsoft/Florence-2-large'
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_florence_model():
return AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).eval().to(device)
florence_model = load_model_without_flash_attn(load_florence_model)
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
def apply_color_mask(frame, mask, obj_id):
cmap = plt.get_cmap("tab10")
color = np.array(cmap(obj_id % 10)[:3]) # Use modulo 10 to cycle through colors
# Ensure mask has the correct shape
if mask.ndim == 4:
mask = mask.squeeze() # Remove singleton dimensions
if mask.ndim == 3 and mask.shape[0] == 1:
mask = mask[0] # Take the first channel if it's a single-channel 3D array
# Reshape mask to match frame dimensions
mask = cv2.resize(mask.astype(np.float32), (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LINEAR)
# Expand dimensions of mask and color for broadcasting
mask = np.expand_dims(mask, axis=2)
color = color.reshape(1, 1, 3)
colored_mask = mask * color
return frame * (1 - mask) + colored_mask * 255
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def run_florence(image, text_input):
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
prompt = task_prompt + text_input
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"].cuda(),
pixel_values=inputs["pixel_values"].cuda(),
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer[task_prompt]['bboxes'][0]
def remove_directory_contents(directory):
for root, dirs, files in os.walk(directory, topdown=False):
for name in files:
os.remove(os.path.join(root, name))
for name in dirs:
os.rmdir(os.path.join(root, name))
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process_video(video_path, prompt):
try:
# Get video info
probe = ffmpeg.probe(video_path)
video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')
width = int(video_info['width'])
height = int(video_info['height'])
num_frames = int(video_info['nb_frames'])
fps = eval(video_info['r_frame_rate'])
print(f"Video info: {width}x{height}, {num_frames} frames, {fps} fps")
# Read frames
out, _ = (
ffmpeg
.input(video_path)
.output('pipe:', format='rawvideo', pix_fmt='rgb24')
.run(capture_stdout=True)
)
frames = np.frombuffer(out, np.uint8).reshape([-1, height, width, 3])
print(f"Read {len(frames)} frames")
# Florence detection on first frame
first_frame = Image.fromarray(frames[0])
mask_box = run_florence(first_frame, prompt)
print("Original mask box:", mask_box)
# Convert mask_box to numpy array
mask_box = np.array(mask_box)
print("Reshaped mask box:", mask_box)
# SAM2 segmentation on first frame
image_predictor.set_image(first_frame)
masks, _, _ = image_predictor.predict(
point_coords=None,
point_labels=None,
box=mask_box[None, :],
multimask_output=False,
)
print("masks.shape", masks.shape)
mask = masks.squeeze().astype(bool)
print("Mask shape:", mask.shape)
print("Frame shape:", frames[0].shape)
# SAM2 video propagation
temp_dir = "temp_frames"
os.makedirs(temp_dir, exist_ok=True)
for i, frame in enumerate(frames):
Image.fromarray(frame).save(os.path.join(temp_dir, f"{i:04d}.jpg"))
print(f"Saved {len(frames)} temporary frames")
inference_state = video_predictor.init_state(video_path=temp_dir)
_, _, _ = video_predictor.add_new_mask(
inference_state=inference_state,
frame_idx=0,
obj_id=1,
mask=mask
)
video_segments = {}
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
print('Segmenting for main vid done')
print(f"Number of segmented frames: {len(video_segments)}")
# Apply segmentation masks to frames
all_segmented_frames = []
for i, frame in enumerate(frames):
if i in video_segments:
for out_obj_id, mask in video_segments[i].items():
frame = apply_color_mask(frame, mask, out_obj_id)
all_segmented_frames.append(frame.astype(np.uint8))
else:
all_segmented_frames.append(frame)
print(f"Applied masks to {len(all_segmented_frames)} frames")
# Clean up temporary files
remove_directory_contents(temp_dir)
os.rmdir(temp_dir)
# Write output video using ffmpeg
output_path = "segmented_video.mp4"
process = (
ffmpeg
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{width}x{height}', r=fps)
.output(output_path, pix_fmt='yuv420p')
.overwrite_output()
.run_async(pipe_stdin=True)
)
for frame in all_segmented_frames:
process.stdin.write(frame.tobytes())
process.stdin.close()
process.wait()
if not os.path.exists(output_path):
raise ValueError(f"Output video file was not created: {output_path}")
print(f"Successfully created output video: {output_path}")
return output_path
except Exception as e:
print(f"Error in process_video: {str(e)}")
print(traceback.format_exc()) # This will print the full stack trace
return None
def segment_video(video_file, prompt):
if video_file is None:
return None
output_video = process_video(video_file, prompt)
return output_video
demo = gr.Interface(
fn=segment_video,
inputs=[
gr.Video(label="Upload Video (Keep it under 10 seconds for this demo)"),
gr.Textbox(label="Enter text prompt for object detection")
],
outputs=gr.Video(label="Segmented Video"),
title="Text-Prompted Video Object Segmentation",
description="""
This demo uses [Florence-2](https://huggingface.co/microsoft/Florence-2-large), a vision-language model, to enable text-prompted object detection for [SAM2](https://github.com/facebookresearch/segment-anything).
Florence-2 interprets your text prompt, allowing SAM2 to segment the described object in the video.
1. Upload a short video (< 10 sec)
2. Describe the object to segment
3. Get your segmented video!
"""
)
demo.launch() |