File size: 8,572 Bytes
aab55b1
 
 
 
 
 
 
 
 
 
 
9b87d5a
5680f2a
 
aab55b1
 
 
 
 
 
 
 
dc2d01b
aab55b1
 
 
 
 
 
 
5680f2a
 
 
 
 
 
 
 
 
 
aab55b1
5680f2a
aab55b1
8870220
 
aab55b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8870220
 
aab55b1
8870220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aab55b1
 
 
 
 
 
 
 
 
8870220
 
9b87d5a
aab55b1
9b87d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aab55b1
9b87d5a
 
 
aab55b1
9b87d5a
8870220
 
 
 
 
 
 
9b87d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
8870220
 
 
 
 
 
 
 
 
 
 
 
 
 
9b87d5a
 
 
aab55b1
9b87d5a
 
 
 
 
 
 
 
 
aab55b1
9b87d5a
 
 
 
 
 
 
aab55b1
9b87d5a
 
 
 
 
 
 
 
aab55b1
9b87d5a
 
 
 
aab55b1
9b87d5a
 
 
 
aab55b1
 
 
 
 
 
9b87d5a
 
aab55b1
 
9b87d5a
aab55b1
 
 
 
 
8870220
 
aab55b1
 
8870220
 
 
 
 
 
 
 
 
aab55b1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import torch
import numpy as np
import gradio as gr
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
from sam2.build_sam import build_sam2_video_predictor, build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
import cv2
import traceback
import matplotlib.pyplot as plt
import ffmpeg
from utils import load_model_without_flash_attn


# CUDA optimizations
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True

# Initialize models
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"

video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
image_predictor = SAM2ImagePredictor(sam2_model)

model_id = 'microsoft/Florence-2-large'
device = "cuda" if torch.cuda.is_available() else "cpu"

def load_florence_model():
    return AutoModelForCausalLM.from_pretrained(
        model_id, 
        trust_remote_code=True, 
        torch_dtype=torch.float16 if device == "cuda" else torch.float32
    ).eval().to(device)

florence_model = load_model_without_flash_attn(load_florence_model)
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)




def apply_color_mask(frame, mask, obj_id):
    cmap = plt.get_cmap("tab10")
    color = np.array(cmap(obj_id % 10)[:3])  # Use modulo 10 to cycle through colors
    
    # Ensure mask has the correct shape
    if mask.ndim == 4:
        mask = mask.squeeze()  # Remove singleton dimensions
    if mask.ndim == 3 and mask.shape[0] == 1:
        mask = mask[0]  # Take the first channel if it's a single-channel 3D array
    
    # Reshape mask to match frame dimensions
    mask = cv2.resize(mask.astype(np.float32), (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LINEAR)
    
    # Expand dimensions of mask and color for broadcasting
    mask = np.expand_dims(mask, axis=2)
    color = color.reshape(1, 1, 3)
    
    colored_mask = mask * color
    return frame * (1 - mask) + colored_mask * 255

@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def run_florence(image, text_input):
    task_prompt = '<OPEN_VOCABULARY_DETECTION>'
    prompt = task_prompt + text_input
    inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"].cuda(),
        pixel_values=inputs["pixel_values"].cuda(),
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text, 
        task=task_prompt, 
        image_size=(image.width, image.height)
    )
    return parsed_answer[task_prompt]['bboxes'][0]

def remove_directory_contents(directory):
    for root, dirs, files in os.walk(directory, topdown=False):
        for name in files:
            os.remove(os.path.join(root, name))
        for name in dirs:
            os.rmdir(os.path.join(root, name))

@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process_video(video_path, prompt):
    try:
        # Get video info
        probe = ffmpeg.probe(video_path)
        video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')
        width = int(video_info['width'])
        height = int(video_info['height'])
        num_frames = int(video_info['nb_frames'])
        fps = eval(video_info['r_frame_rate'])

        print(f"Video info: {width}x{height}, {num_frames} frames, {fps} fps")

        # Read frames
        out, _ = (
            ffmpeg
            .input(video_path)
            .output('pipe:', format='rawvideo', pix_fmt='rgb24')
            .run(capture_stdout=True)
        )
        frames = np.frombuffer(out, np.uint8).reshape([-1, height, width, 3])

        print(f"Read {len(frames)} frames")

        # Florence detection on first frame
        first_frame = Image.fromarray(frames[0])
        mask_box = run_florence(first_frame, prompt)
        print("Original mask box:", mask_box)
        
        # Convert mask_box to numpy array
        mask_box = np.array(mask_box)
        print("Reshaped mask box:", mask_box)
        
        # SAM2 segmentation on first frame
        image_predictor.set_image(first_frame)
        masks, _, _ = image_predictor.predict(
            point_coords=None,
            point_labels=None,
            box=mask_box[None, :],
            multimask_output=False,
        )
        print("masks.shape", masks.shape)
        
        mask = masks.squeeze().astype(bool)
        print("Mask shape:", mask.shape)
        print("Frame shape:", frames[0].shape)
        
        # SAM2 video propagation
        temp_dir = "temp_frames"
        os.makedirs(temp_dir, exist_ok=True)
        for i, frame in enumerate(frames):
            Image.fromarray(frame).save(os.path.join(temp_dir, f"{i:04d}.jpg"))
        
        print(f"Saved {len(frames)} temporary frames")
        
        inference_state = video_predictor.init_state(video_path=temp_dir)
        _, _, _ = video_predictor.add_new_mask(
            inference_state=inference_state,
            frame_idx=0,
            obj_id=1,
            mask=mask
        )
        
        video_segments = {}
        for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
            video_segments[out_frame_idx] = {
                out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
                for i, out_obj_id in enumerate(out_obj_ids)
            }

        print('Segmenting for main vid done')
        print(f"Number of segmented frames: {len(video_segments)}")
        
        # Apply segmentation masks to frames
        all_segmented_frames = []
        for i, frame in enumerate(frames):
            if i in video_segments:
                for out_obj_id, mask in video_segments[i].items():
                    frame = apply_color_mask(frame, mask, out_obj_id)
                all_segmented_frames.append(frame.astype(np.uint8))
            else:
                all_segmented_frames.append(frame)
        
        print(f"Applied masks to {len(all_segmented_frames)} frames")
        
        # Clean up temporary files
        remove_directory_contents(temp_dir)
        os.rmdir(temp_dir)
        
        # Write output video using ffmpeg
        output_path = "segmented_video.mp4"
        process = (
            ffmpeg
            .input('pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{width}x{height}', r=fps)
            .output(output_path, pix_fmt='yuv420p')
            .overwrite_output()
            .run_async(pipe_stdin=True)
        )
        
        for frame in all_segmented_frames:
            process.stdin.write(frame.tobytes())
        
        process.stdin.close()
        process.wait()
        
        if not os.path.exists(output_path):
            raise ValueError(f"Output video file was not created: {output_path}")
        
        print(f"Successfully created output video: {output_path}")
        return output_path

    except Exception as e:
        print(f"Error in process_video: {str(e)}")
        print(traceback.format_exc())  # This will print the full stack trace
        return None
    
def segment_video(video_file, prompt):
    if video_file is None:
        return None
    output_video = process_video(video_file, prompt)
    return output_video

demo = gr.Interface(
    fn=segment_video,
    inputs=[
        gr.Video(label="Upload Video (Keep it under 10 seconds for this demo)"),
        gr.Textbox(label="Enter text prompt for object detection")
    ],
    outputs=gr.Video(label="Segmented Video"),
    title="Text-Prompted Video Object Segmentation",
    description="""
    This demo uses [Florence-2](https://huggingface.co/microsoft/Florence-2-large), a vision-language model, to enable text-prompted object detection for [SAM2](https://github.com/facebookresearch/segment-anything).
    Florence-2 interprets your text prompt, allowing SAM2 to segment the described object in the video.
    
    1. Upload a short video (< 10 sec)
    2. Describe the object to segment
    3. Get your segmented video!
    """
)

demo.launch()