Spaces:
Sleeping
Sleeping
File size: 6,026 Bytes
5d20072 dea462a 1e85041 64d1371 4b44c6a dea462a 26b478e 4fcc8cd 26b478e c9cc87b 64d1371 c9cc87b 26b478e 0a48439 725e115 0a48439 725e115 26b478e 0d4a81a 26b478e 0d4a81a 26b478e 64d1371 26b478e 64d1371 09fe96c 26b478e 90db3b8 b617e78 90db3b8 b617e78 90db3b8 2306856 31057e3 2306856 90db3b8 2306856 b617e78 90db3b8 b617e78 4b44c6a c5afedf 2306856 90db3b8 c5afedf 2306856 4b44c6a c5afedf 2306856 90db3b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import streamlit as st
import whisper
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import base64
from pydub import AudioSegment
st.set_page_config(
page_title="Sing It Forward App",
page_icon="🎵")
st.markdown(
"""
<style>
body {
background: linear-gradient(to bottom, #0E5AAB, #00ffff);
padding: 20px;
border-radius: 10px;
}
a {
color: #EDA67C !important
}
</style>
""",
unsafe_allow_html=True
)
def load_image(image_file):
with open(image_file, "rb") as f:
return f.read()
image_data = load_image("bcg.jpg")
image_base64 = base64.b64encode(image_data).decode()
st.markdown(
f"""
<style>
.stApp {{
background-image: url(data:image/jpeg;base64,{image_base64});
background-size: cover;
background-position: center;
background-repeat: no-repeat;
}}
</style>
""",
unsafe_allow_html=True
)
st.markdown("<h1 style='text-align: center; margin-bottom: 5px;'>Sing It Forward App🎵</h1>", unsafe_allow_html=True)
description = """
<h5>Welcome to Sing It Forward App!</h5>
<p style="text-align: justify;">
Get ready to test your singing skills and memory! First, listen carefully to the first part of the song, then it’s your turn to shine.
Record yourself singing the next 15 seconds on your own, matching the lyrics and rhythm perfectly. Think you’ve got what it takes to keep the music going?
Let’s see if you can hit the right notes and showcase your talent! Unleash your inner star and take the challenge!
</p>
📌For any questions or contact:
**Name:** <span style="color: #EDA67C;">Sahand Khorsandi</span>
**Email:** <a href="mailto:sahand.kh78@yahoo.com" style="color: #EDA67C;">sahand.kh78@yahoo.com</a>"""
st.markdown(description, unsafe_allow_html=True)
st.write('------')
def cosine_sim(text1, text2):
vectorizer = TfidfVectorizer().fit_transform([text1, text2])
vectors = vectorizer.toarray()
return cosine_similarity(vectors)[0, 1]
model = whisper.load_model("small")
tab1, tab2 = st.tabs(["Take Challenge", "Make Challenge"])
with tab1:
st.write("Listen to music since you have to record 15seconds after that")
st.audio("titanic.mp3")
audio_value = st.experimental_audio_input("Sing Rest of music:🎙️")
lyrics = "Far across the distance And spaces between us You have come to show you go on"
if audio_value:
with open("user_sing.mp3", "wb") as f:
f.write(audio_value.getbuffer())
user_lyrics = model.transcribe("user_sing.mp3", language="en")["text"]
st.write(user_lyrics)
similarity_score = cosine_sim(lyrics, user_lyrics)
if similarity_score > 0.85:
st.success('Awsome! You are doing great', icon="✅")
st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True)
else:
st.error('Awful! Try harder next time', icon="🚨")
st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)
def take_challenge(music_file, typed_lyrics, key, language):
st.write('------')
st.write("Listen to music since you have to record 15seconds after that")
st.audio(music_file)
audio_value = st.experimental_audio_input("Sing Rest of music:🎙️", key=key)
if audio_value:
with open("user_sing.mp3", "wb") as f:
f.write(audio_value.getbuffer())
user_lyrics = model.transcribe("user_sing.mp3", language=language)["text"]
st.write(user_lyrics)
similarity_score = cosine_sim(typed_lyrics, user_lyrics)
if similarity_score > 0.85:
st.success('Awsome! You are doing great', icon="✅")
st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True)
else:
st.error('Awful! Try harder next time', icon="🚨")
st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)
with tab2:
st.write("Upload music to make challenge:")
uploaded_file = st.file_uploader("Choose a music file", type=["mp3", "wav"])
language_mapping = {"English": "en", "Persian": "fa"}
selected_language = st.radio("Select Language", language_mapping.keys(), horizontal=True)
language = language_mapping[selected_language]
if uploaded_file is not None:
with open("raw_music.mp3", "wb") as f:
f.write(uploaded_file.getbuffer())
st.audio("raw_music.mp3")
trimm_check = st.checkbox("Trim?")
if trimm_check:
st.write("Specify start and end times for trimming:")
audio = AudioSegment.from_file("raw_music.mp3")
duration = len(audio) // 1000
start_time = st.number_input("Start Time (seconds)", min_value=0, max_value=duration, value=0)
end_time = st.number_input("End Time (seconds)", min_value=0, max_value=duration, value=duration)
if start_time < end_time:
trimmed_audio = audio[start_time * 1000:end_time * 1000]
trimmed_audio.export("trimmed_music.mp3", format="mp3")
st.write("Now type what user should sing:")
typed_lyrics = st.text_area("Lyrics to be singed:")
take_challenge("trimmed_music.mp3", typed_lyrics, "unique_key_1", language)
else:
st.error('Start Time should be smaller than End Time!', icon="❌")
st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)
else:
st.write("Now type what user should sing:")
typed_lyrics = st.text_area("Lyrics to be singed:")
take_challenge("raw_music.mp3", typed_lyrics, "unique_key_2", language) |