File size: 6,325 Bytes
5d20072
dea462a
1e85041
 
64d1371
4b44c6a
684e692
dea462a
26b478e
 
 
 
 
 
 
4fcc8cd
26b478e
 
 
 
c9cc87b
64d1371
c9cc87b
26b478e
 
 
 
 
0a48439
 
 
 
 
 
 
725e115
 
 
 
0a48439
725e115
 
 
 
 
 
 
 
 
26b478e
 
 
 
0d4a81a
26b478e
 
 
 
 
0d4a81a
26b478e
64d1371
 
26b478e
 
 
 
64d1371
 
09fe96c
 
 
 
 
26b478e
b617e78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684e692
 
90db3b8
b617e78
 
 
 
 
 
 
 
 
 
90db3b8
2306856
 
 
31057e3
2306856
 
 
684e692
 
 
 
 
 
 
 
2306856
 
 
 
 
 
 
 
 
 
 
b617e78
 
 
90db3b8
 
 
b617e78
 
 
4b44c6a
c5afedf
 
 
 
 
 
 
 
 
 
 
2306856
90db3b8
c5afedf
2306856
 
4b44c6a
c5afedf
2306856
90db3b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import whisper
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import base64
from pydub import AudioSegment
from hezar.models import Model

st.set_page_config(
    page_title="Sing It Forward App",
    page_icon="🎵")

st.markdown(
    """
    <style>
    body {
        background: linear-gradient(to bottom, #0E5AAB, #00ffff);
        padding: 20px;
        border-radius: 10px;
    }
    a {
        color: #EDA67C !important
    }    
    </style>
    """,
    unsafe_allow_html=True
)

def load_image(image_file):
    with open(image_file, "rb") as f:
        return f.read()

image_data = load_image("bcg.jpg")  
image_base64 = base64.b64encode(image_data).decode()

st.markdown(
    f"""
    <style>
    .stApp {{
        background-image: url(data:image/jpeg;base64,{image_base64});
        background-size: cover;
        background-position: center;
        background-repeat: no-repeat;
    }}
    </style>
    """,
    unsafe_allow_html=True
)

st.markdown("<h1 style='text-align: center; margin-bottom: 5px;'>Sing It Forward App🎵</h1>", unsafe_allow_html=True)

description = """
<h5>Welcome to Sing It Forward App!</h5>

<p style="text-align: justify;">
Get ready to test your singing skills and memory! First, listen carefully to the first part of the song, then it’s your turn to shine.
Record yourself singing the next 15 seconds on your own, matching the lyrics and rhythm perfectly. Think you’ve got what it takes to keep the music going?
Let’s see if you can hit the right notes and showcase your talent! Unleash your inner star and take the challenge!
</p>

📌For any questions or contact:  
**Name:** <span style="color: #EDA67C;">Sahand Khorsandi</span>  
**Email:** <a href="mailto:sahand.kh78@yahoo.com" style="color: #EDA67C;">sahand.kh78@yahoo.com</a>"""
st.markdown(description, unsafe_allow_html=True)
st.write('------')




def cosine_sim(text1, text2):
    vectorizer = TfidfVectorizer().fit_transform([text1, text2])
    vectors = vectorizer.toarray()
    return cosine_similarity(vectors)[0, 1]
    



tab1, tab2 = st.tabs(["Take Challenge", "Make Challenge"])

with tab1:
    st.write("Listen to music since you have to record 15seconds after that")
    st.audio("titanic.mp3")
    
    
    audio_value = st.experimental_audio_input("Sing Rest of music:🎙️")
    lyrics = "Far across the distance And spaces between us You have come to show you go on"
    
    if audio_value:
        with open("user_sing.mp3", "wb") as f:
            f.write(audio_value.getbuffer())
            
        model = whisper.load_model("base.en")
        user_lyrics = model.transcribe("user_sing.mp3", language="en")["text"]
        st.write(user_lyrics)
        similarity_score = cosine_sim(lyrics, user_lyrics)
        if similarity_score > 0.85:
            st.success('Awsome! You are doing great', icon="✅")
            st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True)
        else:
            st.error('Awful! Try harder next time', icon="🚨")
            st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)


def take_challenge(music_file, typed_lyrics, key, language):
    st.write('------')
    st.write("Listen to music since you have to record 15seconds after that")
    st.audio(music_file)
    audio_value = st.experimental_audio_input("Sing Rest of music:🎙️", key=key)
    if audio_value:
        with open("user_sing.mp3", "wb") as f:
            f.write(audio_value.getbuffer())
            
        if language == "en":
            model = whisper.load_model("base.en")
            user_lyrics = model.transcribe("user_sing.mp3", language=language)["text"]
        else:
            model = Model.load("hezarai/whisper-small-fa")
            user_lyrics = model.predict("user_sing.mp3")[0]["text"]
            
        st.write(user_lyrics)
        similarity_score = cosine_sim(typed_lyrics, user_lyrics)
        if similarity_score > 0.85:
            st.success('Awsome! You are doing great', icon="✅")
            st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True)
        else:
            st.error('Awful! Try harder next time', icon="🚨")
            st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)


    
with tab2:
    st.write("Upload music to make challenge:")
    uploaded_file = st.file_uploader("Choose a music file", type=["mp3", "wav"])
    language_mapping = {"English": "en", "Persian": "fa"}
    selected_language = st.radio("Select Language", language_mapping.keys(), horizontal=True)
    language = language_mapping[selected_language]
    if uploaded_file is not None:
        with open("raw_music.mp3", "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.audio("raw_music.mp3")
        trimm_check = st.checkbox("Trim?")
        if trimm_check:   
            st.write("Specify start and end times for trimming:")
            audio = AudioSegment.from_file("raw_music.mp3")
            duration = len(audio) // 1000 
            start_time = st.number_input("Start Time (seconds)", min_value=0, max_value=duration, value=0)
            end_time = st.number_input("End Time (seconds)", min_value=0, max_value=duration, value=duration)
            if start_time < end_time:
                trimmed_audio = audio[start_time * 1000:end_time * 1000]
                trimmed_audio.export("trimmed_music.mp3", format="mp3")
                st.write("Now type what user should sing:")
                typed_lyrics = st.text_area("Lyrics to be singed:")
                take_challenge("trimmed_music.mp3", typed_lyrics, "unique_key_1", language)
            else:
                st.error('Start Time should be smaller than End Time!', icon="❌")
                st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)
        else:
            st.write("Now type what user should sing:")
            typed_lyrics = st.text_area("Lyrics to be singed:")
            take_challenge("raw_music.mp3", typed_lyrics, "unique_key_2", language)