File size: 5,793 Bytes
3dd785b
 
 
18626e5
3dd785b
ca92e41
18626e5
 
 
3dd785b
18626e5
3dd785b
 
 
 
 
 
 
 
 
ca92e41
 
3dd785b
 
 
 
18626e5
3dd785b
 
 
 
 
 
 
 
 
18626e5
3dd785b
 
 
 
 
 
 
 
ca92e41
 
 
 
 
3dd785b
 
18626e5
3dd785b
 
 
 
18626e5
3dd785b
 
 
 
18626e5
3dd785b
 
 
 
 
 
 
ca92e41
 
 
 
 
 
 
3dd785b
ca92e41
3dd785b
ca92e41
3dd785b
ca92e41
 
 
3dd785b
ca92e41
3dd785b
 
 
 
ca92e41
3dd785b
 
ca92e41
 
 
3dd785b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca92e41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import openai
import json
import logging
import sys
import os
import re
from settings import gpt_model, RPFAAP2, RPFAAP1, TDRP, TDRP_COORDS
from helpers import remove_na, filter_tables, merge_strings, Logger

logging.basicConfig(filename='app.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
sys.stdout = Logger("output.log")

def chat_gpt_image(content, context):
    openai.api_key = os.environ['GPT_API_KEY']
    prompt = "You are an expert at identifying OCR errors and correcting them with the help of context, intuition and logic."
    document = "The following text was scanned using OCR, your goal is to return a corrected version of the text"
    prefix = "Additionally"
    if context == "": 
        sequence = (document, content)
    else: 
        sequence = (prefix, context)
        additional = (" ".join(sequence))
        sequence = (additional, content)

    final_content = (" ".join(sequence))
    logging.info(final_content)
    print(final_content)
    completion = openai.ChatCompletion.create(
    model=gpt_model,
    user="1",
    messages=[
        {"role": "system", "content": prompt},
        {"role": "user", "content": final_content}
    ]
    )
    logging.info(completion.choices[0].message.content)
    print(completion.choices[0].message.content)
    return(completion.choices[0].message.content)

def chat_gpt_document(content, document_type, context):
    openai.api_key = os.environ['GPT_API_KEY']
    prompt = "You are an expert at identifying OCR errors and correcting them with the help of context, intuition and logic."
    document_prefix = "The following text was scanned using OCR, your goal is to extract the important entities from the text and correct them with the help of the restrictions placed in the desired format. Remember to not make any changes on the labels and do not populate fields that don't have the , simply extract the text, correct it and return only the desired format. Leave the field blank if it cannot be found in the text. Text:"
    additional_prefix = "Additionally the text"

    text_content = content[0]
    pair_content = content[1]
    document_content = content[2]
    table_content = content[3]
    content_name = content[4]

    if document_type == "RPFAA Building P1":
        document = "./templates/RPFAAP1.json"
        desired_format = RPFAAP1
        tables = [3]
        input_coords = TDRP_COORDS
    elif document_type == "RPFAA Building P2":
        document = "./templates/RPFAAP2.json"
        desired_format = RPFAAP2
        tables = []
        input_coords = TDRP_COORDS
    elif document_type == "TDRP":
        document = "./templates/TDRP.json"
        desired_format = TDRP
        tables = [0]
        input_coords = TDRP_COORDS
    else: 
        property_info = ["Please Select a Document Type"]
        return json.dumps(property_info, indent=4)
    
    validity = check_valid(text_content, document_type)
    logging.info(validity)
    print(validity)

    if validity < 50:
        return f"Document type and document provided do not match for {content_name}"

    if context == "": 
        sequence = (document_prefix, pair_content, desired_format)
    else: 
        sequence = (document_prefix, pair_content, desired_format, additional_prefix, context)

    gpt_content = (" ".join(sequence))
    logging.info(gpt_content)
    print(gpt_content)

    completion = openai.ChatCompletion.create(
    model=gpt_model,
    user="1",
    messages=[
        {"role": "system", "content": prompt},
        {"role": "user", "content": gpt_content}
    ]
    )
    logging.info(completion.choices[0].message.content)
    print(completion.choices[0].message.content)
    input_string = remove_na(completion.choices[0].message.content)
    input_string = merge_strings(input_string,input_coords,document_content)

    with open(document) as f:
        property_info = json.load(f)
    #Adds the name of the file
    property_info["File Name"] = content_name
    #Fills in the information
    for line in input_string.split('\n'):
        if ':' in line:
            key, value = line.split(':', 1)
            key = key.strip()
            for category in property_info:
                if key in property_info[category]:
                    property_info[category][key] = value.strip()
                    break
            else:
                if key == "File Name":
                    property_info[key] = value.strip()
    
    json.dumps(property_info, indent=4)
    table_string = filter_tables(table_content, tables)
    table_dict = json.loads(table_string)
    property_info.update(table_dict)
    json_string = json.dumps(property_info, indent=4)
    return json_string

def check_valid(text_content, document_type):
    openai.api_key = os.environ['GPT_API_KEY']

    if document_type == "RPFAA Building P1" or document_type == "RPFAA Building P2":
        document = "Real Property Field Appraisal and Assessment Sheet for Buildings and Other Structures"
    elif document_type == "TDRP":
        document = "Tax Declaration Form for Real Property"
    else: 
        document = "None"

    prompt = "You are an expert at identifying Document Types based on their content."
    content = f"The document attached was scanned through OCR, from a scale of 0-100 how possible for it to have the Document Type: {document}. Return only the probability as a numerical value. Document Content: {text_content}"
    completion = openai.ChatCompletion.create(
    model=gpt_model,
    user="1",
    messages=[
        {"role": "system", "content": prompt},
        {"role": "user", "content": content}
    ]
    )
    match = re.search(r'\d+', completion.choices[0].message.content)
    if match:
        return int(match.group())
    else:
        return 100