File size: 9,441 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import argparse
import os
import sys
import warnings
from pathlib import Path

import datasets
import pandas as pd
import torch
from datasets import Dataset, DatasetDict
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    EarlyStoppingCallback,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
)

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from utils import (
    add_new_tokens,
    filter_out,
    get_accuracy_score,
    preprocess_dataset,
    seed_everything,
)

# Suppress warnings and disable progress bars
warnings.filterwarnings("ignore")
datasets.utils.logging.disable_progress_bar()


def parse_args():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(
        description="Training script for reaction prediction model."
    )
    parser.add_argument(
        "--train_data_path", type=str, required=True, help="Path to training data CSV."
    )
    parser.add_argument(
        "--valid_data_path",
        type=str,
        required=True,
        help="Path to validation data CSV.",
    )
    parser.add_argument("--test_data_path", type=str, help="Path to test data CSV.")
    parser.add_argument(
        "--USPTO_test_data_path",
        type=str,
        help="The path to data used for USPTO testing. CSV file that contains ['REACTANT', 'PRODUCT'] columns is expected.",
    )
    parser.add_argument(
        "--output_dir", type=str, default="t5", help="Path of the output directory."
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        required=True,
        help="Pretrained model path or name.",
    )
    parser.add_argument(
        "--debug", action="store_true", default=False, help="Enable debug mode."
    )
    parser.add_argument(
        "--epochs",
        type=int,
        default=5,
        help="Number of epochs.",
    )
    parser.add_argument("--lr", type=float, default=1e-3, help="Learning rate.")
    parser.add_argument("--batch_size", type=int, default=16, help="Batch size.")
    parser.add_argument(
        "--input_max_length",
        type=int,
        default=400,
        help="Max input token length.",
    )
    parser.add_argument(
        "--target_max_length",
        type=int,
        default=150,
        help="Max target token length.",
    )
    parser.add_argument(
        "--eval_beams",
        type=int,
        default=5,
        help="Number of beams used for beam search during evaluation.",
    )
    parser.add_argument(
        "--target_column",
        type=str,
        default="REACTANT",
        help="Target column name.",
    )
    parser.add_argument(
        "--weight_decay",
        type=float,
        default=0.01,
        help="Weight decay.",
    )
    parser.add_argument(
        "--evaluation_strategy",
        type=str,
        default="epoch",
        help="Evaluation strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --eval_steps.",
    )
    parser.add_argument(
        "--eval_steps",
        type=int,
        help="Evaluation steps.",
    )
    parser.add_argument(
        "--save_strategy",
        type=str,
        default="epoch",
        help="Save strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --save_steps.",
    )
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save steps.",
    )
    parser.add_argument(
        "--logging_strategy",
        type=str,
        default="epoch",
        help="Logging strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --logging_steps.",
    )
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=500,
        help="Logging steps.",
    )
    parser.add_argument(
        "--save_total_limit",
        type=int,
        default=2,
        help="Limit of saved checkpoints.",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        default=False,
        help="Enable fp16 training.",
    )
    parser.add_argument(
        "--disable_tqdm",
        action="store_true",
        default=False,
        help="Disable tqdm.",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed.",
    )

    return parser.parse_args()


def preprocess_df(df, drop_duplicates=True):
    """Preprocess the dataframe by filling NaNs, dropping duplicates, and formatting the input."""
    for col in ["REACTANT", "PRODUCT", "CATALYST", "REAGENT", "SOLVENT"]:
        if col not in df.columns:
            df[col] = None
        df[col] = df[col].fillna(" ")

    if drop_duplicates:
        df = (
            df[["REACTANT", "PRODUCT", "CATALYST", "REAGENT", "SOLVENT"]]
            .drop_duplicates()
            .reset_index(drop=True)
        )
    df["input"] = df["PRODUCT"]

    return df


def preprocess_USPTO(df):
    df["REACTANT"] = df["REACTANT"].apply(lambda x: str(sorted(x.split("."))))
    df["PRODUCT"] = df["PRODUCT"].apply(lambda x: str(sorted(x.split("."))))

    df["pair"] = df["REACTANT"] + " - " + df["PRODUCT"].astype(str)

    return df


if __name__ == "__main__":
    CFG = parse_args()
    CFG.disable_tqdm = True
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    seed_everything(seed=CFG.seed)

    train = preprocess_df(
        filter_out(pd.read_csv(CFG.train_data_path), ["REACTANT", "PRODUCT"])
    )
    valid = preprocess_df(
        filter_out(pd.read_csv(CFG.valid_data_path), ["REACTANT", "PRODUCT"])
    )
    if CFG.USPTO_test_data_path:
        train_copy = preprocess_USPTO(train.copy())
        USPTO_test = preprocess_USPTO(pd.read_csv(CFG.USPTO_test_data_path))
        train = train[~train_copy["pair"].isin(USPTO_test["pair"])].reset_index(
            drop=True
        )
    train["pair"] = train["REACTANT"] + " - " + train["PRODUCT"]
    valid["pair"] = valid["REACTANT"] + " - " + valid["PRODUCT"]
    valid = valid[~valid["pair"].isin(train["pair"])].reset_index(drop=True)
    train.to_csv("train.csv", index=False)
    valid.to_csv("valid.csv", index=False)

    if CFG.test_data_path:
        test = preprocess_df(
            filter_out(pd.read_csv(CFG.test_data_path), ["REACTANT", "PRODUCT"])
        )
        test["pair"] = test["REACTANT"] + " - " + test["PRODUCT"]
        test = test[~test["pair"].isin(train["pair"])].reset_index(drop=True)
        test = test.drop_duplicates(subset=["pair"]).reset_index(drop=True)
        test.to_csv("test.csv", index=False)

    dataset = DatasetDict(
        {
            "train": Dataset.from_pandas(train[["input", "REACTANT"]]),
            "validation": Dataset.from_pandas(valid[["input", "REACTANT"]]),
        }
    )

    # load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        os.path.abspath(CFG.pretrained_model_name_or_path)
        if os.path.exists(CFG.pretrained_model_name_or_path)
        else CFG.pretrained_model_name_or_path,
        return_tensors="pt",
    )
    tokenizer = add_new_tokens(
        tokenizer,
        Path(__file__).resolve().parent.parent / "data" / "additional_tokens.txt",
    )
    tokenizer.add_special_tokens(
        {
            "additional_special_tokens": tokenizer.additional_special_tokens
            + ["REACTANT:", "REAGENT:"]
        }
    )
    CFG.tokenizer = tokenizer

    model = AutoModelForSeq2SeqLM.from_pretrained(
        os.path.abspath(CFG.pretrained_model_name_or_path) if os.path.exists(CFG.pretrained_model_name_or_path) else CFG.pretrained_model_name_or_path
    )
    model.resize_token_embeddings(len(tokenizer))

    tokenized_datasets = dataset.map(
        lambda examples: preprocess_dataset(examples, CFG),
        batched=True,
        remove_columns=dataset["train"].column_names,
        load_from_cache_file=False,
    )

    data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

    args = Seq2SeqTrainingArguments(
        CFG.output_dir,
        evaluation_strategy=CFG.evaluation_strategy,
        eval_steps=CFG.eval_steps,
        save_strategy=CFG.save_strategy,
        save_steps=CFG.save_steps,
        logging_strategy=CFG.logging_strategy,
        logging_steps=CFG.logging_steps,
        learning_rate=CFG.lr,
        per_device_train_batch_size=CFG.batch_size,
        per_device_eval_batch_size=CFG.batch_size,
        weight_decay=CFG.weight_decay,
        save_total_limit=CFG.save_total_limit,
        num_train_epochs=CFG.epochs,
        predict_with_generate=True,
        fp16=CFG.fp16,
        disable_tqdm=CFG.disable_tqdm,
        push_to_hub=False,
        load_best_model_at_end=True,
    )

    model.config.eval_beams = CFG.eval_beams
    model.config.max_length = CFG.target_max_length
    trainer = Seq2SeqTrainer(
        model,
        args,
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["validation"],
        data_collator=data_collator,
        tokenizer=tokenizer,
        compute_metrics=lambda eval_preds: get_accuracy_score(eval_preds, CFG),
        callbacks=[EarlyStoppingCallback(early_stopping_patience=10)],
    )

    try:
        trainer.train(resume_from_checkpoint=True)
    except:
        trainer.train(resume_from_checkpoint=None)
    trainer.save_model("./best_model")