File size: 7,261 Bytes
e945d2a 4f25de8 b9db6c8 4f25de8 1ed31e5 1948bd1 4f25de8 1948bd1 1ed31e5 1948bd1 4f25de8 1ed31e5 4f25de8 1ed31e5 4f25de8 b9db6c8 4f25de8 1ed31e5 4f25de8 1ed31e5 4f25de8 1ed31e5 4f25de8 1ed31e5 cafbf5c 1ed31e5 4f25de8 cafbf5c 1ed31e5 124d0eb 1ed31e5 4f25de8 1ed31e5 e945d2a cafbf5c 0c3223e 1ed31e5 0c3223e 1ed31e5 0c3223e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
import pandas as pd
from pathlib import Path
from pathlib import Path
import pandas as pd
import json
import metric
from sklearn.metrics import roc_auc_score, roc_curve
import numpy as np
import altair as alt
import re
_metric = metric._metric
def get_submission(f):
submission_info = json.load(open(f))
submissions = pd.DataFrame(submission_info["submissions"])
submissions["team_id"] = submission_info["id"]
return submissions
# def get_submissions_file(f):
# submission_df = pd.read_csv(f).set_index("id")
# if isinstance(submission_df.iloc[0]["score"],str):
# submission_df.loc[:, "score"] = submission_df.loc[:, "score"].apply(lambda a: json.loads(re.sub(r'\b(\d+)\.(?!\d)', r'\1.0', a))[0] if isinstance(a,str) else float("nan"))
# return submission_df
def get_submissions_file(f):
submission_df = pd.read_csv(f).set_index("id")
if isinstance(submission_df.iloc[0]["score"], str):
submission_df.loc[:, "score"] = submission_df.loc[:, "score"].apply(
lambda a: float(
np.array(json.loads(re.sub(r"\b(\d+)\.(?!\d)", r"\1.0", a))).squeeze()
if isinstance(a, str)
else float("nan")
)
)
return submission_df
def load_results(local_dir):
team_file_name = "teams.json"
team_info = pd.read_json(Path(local_dir) / team_file_name).T
team_info.loc["baselines", "name"] = "baselines"
submission_info_dir = "submission_info"
submission_info_files = list((Path(local_dir) / submission_info_dir).glob("*.json"))
# submission_info_files += ["baselines/baselines.json"]
submissions = pd.concat(
[get_submission(f) for f in submission_info_files], ignore_index=True
)
submissions.loc[:, "team"] = team_info.loc[
submissions["team_id"].values, "name"
].values
submissions["submission_files"] = submissions.apply(
lambda a: (
str(
Path(local_dir)
/ "submissions"
/ (a["team_id"] + "-" + a["submission_id"] + ".csv")
)
if a["team_id"] != "baselines"
else str(
Path("baselines") / (a["team_id"] + "-" + a["submission_id"] + ".csv")
)
),
axis=1,
)
submissions = submissions.drop(columns=["public_score", "private_score"])
submissions["submission"] = (
submissions["team"] + " - " + submissions["submission_repo"]
)
return submissions
def compute_metrics(submissions, local_dir, admin=True):
submissions = submissions.query("status==3.0")
# if not admin:
# selected_by_team = submissions.groupby("team")["selected"].sum()
# teams_no_selected = selected_by_team.index[selected_by_team==0]
# submissions.loc[submissions.team.isin(teams_no_selected),"selected"] = True
# submissions = submissions.query("selected")
solution_df = pd.read_csv(Path(local_dir) / "solution.csv").set_index("id")
results = {"private_score": [], "public_score": []}
fields = ["team_id", "team", "submission_id", "submission_repo"]
for i, row in submissions.T.items():
# r = pd.read_csv(row["submission_files"]).set_index("id")
r = get_submissions_file(row["submission_files"])
eval = _metric(
solution_df,
r,
mode="detailed",
admin=admin,
additional_columns=(
["augmentation"] if "augmentation" in solution_df.columns else None
),
)
for m in ["private_score", "public_score"]:
for f in fields:
eval[m][f] = row[f]
eval[m]["submission"] = f"{row.team} - {row.submission_repo}"
eval[m] = pd.Series(eval[m]).to_frame().T
results[m].append(eval[m])
for m in ["private_score", "public_score"]:
temp = pd.concat(results[m], ignore_index=True).T
temp.index.name = "metric"
temp = temp.reset_index()
# def parse(s):
# if any(p in s for p in ["generated","pristine"]):
# s = s.split("_")
# return pd.Series(dict(pred = s[0], source = "_".join(s[1:])))
# else:
# return pd.Series(dict(pred = s, source = None))
# temp = pd.concat([temp, temp["metric"].apply(parse)], axis = 1)
# results[m] = temp.set_index(["pred","source"])
# results[m] = results[m].drop(columns = ["metric"]).T
results[m] = (
temp.set_index("metric")
.T.sort_values("balanced_accuracy", ascending=False)
.drop_duplicates(subset=["team", "submission_repo"])
)
if not admin:
# only show top selected
results[m] = (
results[m]
.sort_values(["team", "balanced_accuracy"], ascending=False)
.drop_duplicates(subset=["team"])
.sort_values("balanced_accuracy", ascending=False)
)
results[m] = results[m].set_index("submission" if admin else "team")
fields_to_merge = [
"generated_accuracy",
"pristine_accuracy",
"balanced_accuracy",
"total_time",
"fail_rate",
]
submissions = pd.concat(
[
submissions.set_index("submission_id"),
results["private_score"]
.reset_index()
.set_index("submission_id")
.loc[:, fields_to_merge],
],
axis=1,
).reset_index()
return results, submissions
status_lookup = "NA,QUEUED,PROCESSING,SUCCESS,FAILED".split(",")
def process_data(path, save_path):
submissions = load_results(path)
submissions["datetime"] = pd.DatetimeIndex(submissions["datetime"])
submissions["date"] = submissions["datetime"].dt.date
submissions["status_reason"] = (
submissions["status"].astype(int).apply(lambda a: status_lookup[a])
)
submissions.loc[
:, ["submission_id", "datetime", "date", "status", "status_reason"]
].to_csv(save_path + "_submissions.csv")
results, submissions = compute_metrics(submissions, path, admin=False)
cols_to_drop = ["team_id", "submission_id", "submission_repo", "submission"]
results["public_score"].drop(columns=cols_to_drop).to_csv(save_path + ".csv")
if __name__ == "__main__":
path_to_cache = os.environ.get("COMP_CACHE","../competition_cache")
process_data(os.path.join(path_to_cache,"temp_task1"), "task1")
process_data(os.path.join(path_to_cache,"temp_task2"), "task2")
process_data(os.path.join(path_to_cache,"temp_task3"), "task3")
process_data(os.path.join(path_to_cache,"temp_practice"), "practice")
# from datetime import date
# # Get today's date
# today = date.today()
# # Print date in YYYY-MM-DD format
# print("Today's date:", today)
from datetime import datetime
import pytz
# Define EST timezone
est = pytz.timezone("US/Eastern")
# Get current time in EST
est_time = datetime.now(est)
# Print current date and time in EST
today = f"Updated on {est_time.strftime('%Y-%m-%d %H:%M:%S')} EST"
with open("updated.txt", "w") as f:
f.write(str(today))
|