File size: 7,261 Bytes
e945d2a
4f25de8
 
 
 
 
 
 
 
 
b9db6c8
4f25de8
 
 
 
 
 
 
 
 
 
 
1ed31e5
1948bd1
 
 
 
 
 
 
4f25de8
 
1948bd1
 
 
1ed31e5
 
 
1948bd1
 
4f25de8
 
1ed31e5
4f25de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed31e5
4f25de8
b9db6c8
 
 
 
 
4f25de8
 
 
 
 
 
 
 
 
1ed31e5
 
 
 
 
 
 
 
 
4f25de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed31e5
 
 
 
 
 
 
4f25de8
1ed31e5
 
 
 
 
 
 
 
 
 
4f25de8
 
 
 
1ed31e5
cafbf5c
1ed31e5
 
4f25de8
cafbf5c
 
1ed31e5
 
 
 
 
 
124d0eb
1ed31e5
 
 
4f25de8
 
1ed31e5
e945d2a
 
 
 
 
cafbf5c
0c3223e
 
 
 
 
 
 
 
 
 
 
 
1ed31e5
0c3223e
 
 
 
 
 
1ed31e5
0c3223e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import pandas as pd
from pathlib import Path
from pathlib import Path
import pandas as pd
import json
import metric
from sklearn.metrics import roc_auc_score, roc_curve
import numpy as np
import altair as alt
import re

_metric = metric._metric


def get_submission(f):
    submission_info = json.load(open(f))
    submissions = pd.DataFrame(submission_info["submissions"])
    submissions["team_id"] = submission_info["id"]

    return submissions


# def get_submissions_file(f):
#     submission_df = pd.read_csv(f).set_index("id")
#     if isinstance(submission_df.iloc[0]["score"],str):
#         submission_df.loc[:, "score"] = submission_df.loc[:, "score"].apply(lambda a: json.loads(re.sub(r'\b(\d+)\.(?!\d)', r'\1.0', a))[0] if isinstance(a,str) else float("nan"))
#     return submission_df


def get_submissions_file(f):
    submission_df = pd.read_csv(f).set_index("id")
    if isinstance(submission_df.iloc[0]["score"], str):
        submission_df.loc[:, "score"] = submission_df.loc[:, "score"].apply(
            lambda a: float(
                np.array(json.loads(re.sub(r"\b(\d+)\.(?!\d)", r"\1.0", a))).squeeze()
                if isinstance(a, str)
                else float("nan")
            )
        )
    return submission_df


def load_results(local_dir):
    team_file_name = "teams.json"
    team_info = pd.read_json(Path(local_dir) / team_file_name).T
    team_info.loc["baselines", "name"] = "baselines"
    submission_info_dir = "submission_info"
    submission_info_files = list((Path(local_dir) / submission_info_dir).glob("*.json"))
    # submission_info_files += ["baselines/baselines.json"]
    submissions = pd.concat(
        [get_submission(f) for f in submission_info_files], ignore_index=True
    )
    submissions.loc[:, "team"] = team_info.loc[
        submissions["team_id"].values, "name"
    ].values

    submissions["submission_files"] = submissions.apply(
        lambda a: (
            str(
                Path(local_dir)
                / "submissions"
                / (a["team_id"] + "-" + a["submission_id"] + ".csv")
            )
            if a["team_id"] != "baselines"
            else str(
                Path("baselines") / (a["team_id"] + "-" + a["submission_id"] + ".csv")
            )
        ),
        axis=1,
    )
    submissions = submissions.drop(columns=["public_score", "private_score"])
    submissions["submission"] = (
        submissions["team"] + " - " + submissions["submission_repo"]
    )
    return submissions


def compute_metrics(submissions, local_dir, admin=True):

    submissions = submissions.query("status==3.0")

    # if not admin:
    #     selected_by_team = submissions.groupby("team")["selected"].sum()
    #     teams_no_selected = selected_by_team.index[selected_by_team==0]
    #     submissions.loc[submissions.team.isin(teams_no_selected),"selected"] = True
    #     submissions = submissions.query("selected")

    solution_df = pd.read_csv(Path(local_dir) / "solution.csv").set_index("id")

    results = {"private_score": [], "public_score": []}

    fields = ["team_id", "team", "submission_id", "submission_repo"]
    for i, row in submissions.T.items():
        # r = pd.read_csv(row["submission_files"]).set_index("id")
        r = get_submissions_file(row["submission_files"])
        eval = _metric(
            solution_df,
            r,
            mode="detailed",
            admin=admin,
            additional_columns=(
                ["augmentation"] if "augmentation" in solution_df.columns else None
            ),
        )
        for m in ["private_score", "public_score"]:
            for f in fields:
                eval[m][f] = row[f]
            eval[m]["submission"] = f"{row.team} - {row.submission_repo}"

            eval[m] = pd.Series(eval[m]).to_frame().T
            results[m].append(eval[m])

    for m in ["private_score", "public_score"]:
        temp = pd.concat(results[m], ignore_index=True).T
        temp.index.name = "metric"
        temp = temp.reset_index()

        # def parse(s):
        #     if any(p in s for p in ["generated","pristine"]):
        #         s = s.split("_")
        #         return pd.Series(dict(pred = s[0], source = "_".join(s[1:])))
        #     else:
        #         return pd.Series(dict(pred = s, source = None))

        # temp = pd.concat([temp, temp["metric"].apply(parse)], axis = 1)
        # results[m] = temp.set_index(["pred","source"])
        # results[m] = results[m].drop(columns = ["metric"]).T
        results[m] = (
            temp.set_index("metric")
            .T.sort_values("balanced_accuracy", ascending=False)
            .drop_duplicates(subset=["team", "submission_repo"])
        )

        if not admin:
            # only show top selected
            results[m] = (
                results[m]
                .sort_values(["team", "balanced_accuracy"], ascending=False)
                .drop_duplicates(subset=["team"])
                .sort_values("balanced_accuracy", ascending=False)
            )

        results[m] = results[m].set_index("submission" if admin else "team")

    fields_to_merge = [
        "generated_accuracy",
        "pristine_accuracy",
        "balanced_accuracy",
        "total_time",
        "fail_rate",
    ]

    submissions = pd.concat(
        [
            submissions.set_index("submission_id"),
            results["private_score"]
            .reset_index()
            .set_index("submission_id")
            .loc[:, fields_to_merge],
        ],
        axis=1,
    ).reset_index()

    return results, submissions


status_lookup = "NA,QUEUED,PROCESSING,SUCCESS,FAILED".split(",")


def process_data(path, save_path):
    submissions = load_results(path)
    submissions["datetime"] = pd.DatetimeIndex(submissions["datetime"])
    submissions["date"] = submissions["datetime"].dt.date
    submissions["status_reason"] = (
        submissions["status"].astype(int).apply(lambda a: status_lookup[a])
    )
    submissions.loc[
        :, ["submission_id", "datetime", "date", "status", "status_reason"]
    ].to_csv(save_path + "_submissions.csv")

    results, submissions = compute_metrics(submissions, path, admin=False)
    cols_to_drop = ["team_id", "submission_id", "submission_repo", "submission"]
    results["public_score"].drop(columns=cols_to_drop).to_csv(save_path + ".csv")


if __name__ == "__main__":
    path_to_cache = os.environ.get("COMP_CACHE","../competition_cache")
    process_data(os.path.join(path_to_cache,"temp_task1"), "task1")
    process_data(os.path.join(path_to_cache,"temp_task2"), "task2")
    process_data(os.path.join(path_to_cache,"temp_task3"), "task3")
    process_data(os.path.join(path_to_cache,"temp_practice"), "practice")

    # from datetime import date

    # # Get today's date
    # today = date.today()

    # # Print date in YYYY-MM-DD format
    # print("Today's date:", today)

    from datetime import datetime
    import pytz

    # Define EST timezone
    est = pytz.timezone("US/Eastern")

    # Get current time in EST
    est_time = datetime.now(est)

    # Print current date and time in EST
    today = f"Updated on {est_time.strftime('%Y-%m-%d %H:%M:%S')} EST"
    with open("updated.txt", "w") as f:
        f.write(str(today))