Spaces:
Sleeping
Sleeping
File size: 2,157 Bytes
3dfd099 3b643b9 42f834a 3dfd099 ddfe3b8 3dfd099 ddfe3b8 3dfd099 3b643b9 3dfd099 ddfe3b8 3dfd099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# HF libraries
from langchain_huggingface import HuggingFaceEndpoint
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
# Import things that are needed generically
from langchain.tools.render import render_text_description
import os
from dotenv import load_dotenv
from rag_app.structured_tools.structured_tools import (
google_search, knowledgeBase_search
)
from langchain.prompts import PromptTemplate
from rag_app.templates.react_json_ger import template_system
# from rag_app.utils import logger
# set_llm_cache(SQLiteCache(database_path=".cache.db"))
# logger = logger.get_console_logger("hf_mixtral_agent")
config = load_dotenv(".env")
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
LLM_MODEL = os.getenv('LLM_MODEL')
# Load the model from the Hugging Face Hub
llm = HuggingFaceEndpoint(repo_id=LLM_MODEL,
temperature=0.1,
max_new_tokens=1024,
repetition_penalty=1.2,
return_full_text=False
)
tools = [
knowledgeBase_search,
google_search,
]
prompt = PromptTemplate.from_template(
template=template_system
)
prompt = prompt.partial(
tools=render_text_description(tools),
tool_names=", ".join([t.name for t in tools]),
)
# define the agent
chat_model_with_stop = llm.bind(stop=["\nObservation"])
agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
#"chat_history": lambda x: x["chat_history"],
}
| prompt
| chat_model_with_stop
| ReActJsonSingleInputOutputParser()
)
# instantiate AgentExecutor
agent_worker = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
max_iterations=10, # cap number of iterations
#max_execution_time=60, # timout at 60 sec
return_intermediate_steps=True,
handle_parsing_errors=True,
) |