File size: 4,514 Bytes
d56cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
"""

Created on Wed Nov 13 18:37:31 2024



@author: sabar

"""

import gradio as gr
import cv2
import numpy as np
import os
import json
from openvino.runtime import Core  # Assuming you're using OpenVINO
# from tqdm import tqdm
from tf_post_processing import non_max_suppression #,optimized_object_detection

# Load the OpenVINO model
classification_model_xml = "./model/best_openvino_model/best.xml"
core = Core()
config = {
    "INFERENCE_NUM_THREADS": 2,
    "ENABLE_CPU_PINNING": True
}
model = core.read_model(model=classification_model_xml)
compiled_model = core.compile_model(model=model, device_name="CPU", config=config)

label_to_class_text = {
    0: 'range',
    1: 'entry door',
    2: 'kitchen sink',
    3: 'bathroom sink',
    4: 'toilet',
    5: 'double folding door',
    6: 'window',
    7: 'shower',
    8: 'bathtub',
    9: 'single folding door',
    10: 'dishwasher',
    11: 'refrigerator'
}

# Function to perform inference
def predict_image(image):
    # Resize, preprocess, and reshape the input image
    img_size = 960
    resized_image = cv2.resize(image, (img_size, img_size)) / 255.0
    resized_image = resized_image.transpose(2, 0, 1)
    reshaped_image = np.expand_dims(resized_image, axis=0).astype(np.float32)
    
    im_height, im_width, _ = image.shape
    output_numpy = compiled_model(reshaped_image)[0]
    results = non_max_suppression(output_numpy, conf_thres=0.2, iou_thres=0.6, max_wh=15000)[0]

    # Prepare output paths
    output_path = "./output_file_train/"
    output_image_folder = os.path.join(output_path, "images_alienware_openvino/")
    os.makedirs(output_image_folder, exist_ok=True)

    output_json_folder = os.path.join(output_path, "json_output/")
    os.makedirs(output_json_folder, exist_ok=True)
    
    predictions = []

    # Draw boxes and collect prediction data
    for result in results:
        boxes = result[:4]
        prob = result[4]
        classes = int(result[5])

        x1, y1, x2, y2 = np.uint16([
            boxes[0] * im_width,
            boxes[1] * im_height,
            boxes[2] * im_width,
            boxes[3] * im_height
        ])

        if prob > 0.2:
            cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 0), 2)
            label_text = f"{classes} {round(prob, 2)}"
            cv2.putText(image, label_text, (x1, y1), 0, 0.5, (0, 255, 0), 2)

            # Store prediction info in a JSON-compatible format
            predictions.append({
                "class": label_to_class_text[classes],
                "probability": round(float(prob), 2),
                "coordinates": {
                    "xmin": int(x1),
                    "ymin": int(y1),
                    "xmax": int(x2),
                    "ymax": int(y2)
                }
            })

    # Save the processed image and JSON file
    output_image_path = os.path.join(output_image_folder, "result_image.jpg")
    cv2.imwrite(output_image_path, image)

    output_json_path = os.path.join(output_json_folder, "predictions.json")
    with open(output_json_path, 'w') as f:
        json.dump(predictions, f, indent=4)

    return output_image_path, predictions

# Set up Gradio interface to read from sample folder
def gradio_interface():
    # sample_folder = "./sample"  # Folder containing sample images
    
    # Sample images for demonstration (make sure these image paths exist)
    sample_images = [
        "./sample/10_2.jpg",  # replace with actual image paths
        "./sample/10_10.jpg",  # replace with actual image paths
        "./sample/10_12.jpg"  # replace with actual image paths
    ]
    # image_paths = [os.path.join(sample_folder, img) for img in os.listdir(sample_folder) if img.endswith(('.png', '.jpg', '.jpeg'))]
    results = []
    os.makedirs("samples", exist_ok=True)

    for image_path in sample_images:
        image = cv2.imread(image_path)
        output_image_path, predictions = predict_image(image)
        results.append({
            "image_path": output_image_path,
            "predictions": predictions
        })
        
    return results

# Launch the Gradio app
gr.Interface(
    fn=gradio_interface,
    inputs=None,
    outputs="json",
    title="OpenVINO Model Inference with Gradio",
    description="Reads images from the 'sample' folder to get model predictions with bounding boxes and probabilities."
).launch()