File size: 4,960 Bytes
2cdb2ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import threading
import time

import huggingface_hub
from gradio_client import Client, handle_file

from trackio.media import TrackioImage
from trackio.sqlite_storage import SQLiteStorage
from trackio.typehints import LogEntry, UploadEntry
from trackio.utils import RESERVED_KEYS, fibo, generate_readable_name


class Run:
    def __init__(
        self,
        url: str,
        project: str,
        client: Client | None,
        name: str | None = None,
        config: dict | None = None,
        space_id: str | None = None,
    ):
        self.url = url
        self.project = project
        self._client_lock = threading.Lock()
        self._client_thread = None
        self._client = client
        self._space_id = space_id
        self.name = name or generate_readable_name(SQLiteStorage.get_runs(project))
        self.config = config or {}
        self._queued_logs: list[LogEntry] = []
        self._queued_uploads: list[UploadEntry] = []
        self._stop_flag = threading.Event()

        self._client_thread = threading.Thread(target=self._init_client_background)
        self._client_thread.daemon = True
        self._client_thread.start()

    def _batch_sender(self):
        """Send batched logs every 500ms."""
        while not self._stop_flag.is_set():
            time.sleep(0.5)

            with self._client_lock:
                if self._queued_logs and self._client is not None:
                    logs_to_send = self._queued_logs.copy()
                    self._queued_logs.clear()

                    self._client.predict(
                        api_name="/bulk_log",
                        logs=logs_to_send,
                        hf_token=huggingface_hub.utils.get_token(),
                    )

    def _init_client_background(self):
        if self._client is None:
            fib = fibo()
            for sleep_coefficient in fib:
                try:
                    client = Client(self.url, verbose=False)
                    with self._client_lock:
                        self._client = client
                    break
                except Exception:
                    pass
                if sleep_coefficient is not None:
                    time.sleep(0.1 * sleep_coefficient)

        self._batch_sender()

    def _process_media(self, metrics, step: int | None) -> dict:
        """
        Serialize media in metrics and upload to space if needed.
        """
        serializable_metrics = {}
        if not step:
            step = 0
        for key, value in metrics.items():
            if isinstance(value, TrackioImage):
                value._save(self.project, self.name, step)
                serializable_metrics[key] = value._to_dict()
                if self._space_id:
                    # Upload local media when deploying to space
                    upload_entry: UploadEntry = {
                        "project": self.project,
                        "run": self.name,
                        "step": step,
                        "uploaded_file": handle_file(value._get_absolute_file_path()),
                    }
                    with self._client_lock:
                        self._queued_uploads.append(upload_entry)
            else:
                serializable_metrics[key] = value
        return serializable_metrics

    def log(self, metrics: dict, step: int | None = None):
        for k in metrics.keys():
            if k in RESERVED_KEYS or k.startswith("__"):
                raise ValueError(
                    f"Please do not use this reserved key as a metric: {k}"
                )

        metrics = self._process_media(metrics, step)
        log_entry: LogEntry = {
            "project": self.project,
            "run": self.name,
            "metrics": metrics,
            "step": step,
        }

        with self._client_lock:
            self._queued_logs.append(log_entry)

    def finish(self):
        """Cleanup when run is finished."""
        self._stop_flag.set()

        with self._client_lock:
            if self._queued_logs and self._client is not None:
                logs_to_send = self._queued_logs.copy()
                self._queued_logs.clear()
                self._client.predict(
                    api_name="/bulk_log",
                    logs=logs_to_send,
                    hf_token=huggingface_hub.utils.get_token(),
                )
            if self._queued_uploads and self._client is not None:
                uploads_to_send = self._queued_uploads.copy()
                self._queued_uploads.clear()
                self._client.predict(
                    api_name="/bulk_upload_media",
                    uploads=uploads_to_send,
                    hf_token=huggingface_hub.utils.get_token(),
                )

        if self._client_thread is not None:
            print(f"* Uploading logs to Trackio Space: {self.url} (please wait...)")
            self._client_thread.join(timeout=30)