Spaces:
Running
Running
File size: 28,168 Bytes
dd21ebf afb6dea dd21ebf cbab1da dd21ebf afb6dea dd21ebf afb6dea dd21ebf cbab1da dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf b90f766 dd21ebf afb6dea dd21ebf cbab1da dd21ebf afb6dea dd21ebf cbab1da dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf cbab1da dd21ebf cbab1da dd21ebf afb6dea dd21ebf b90f766 dd21ebf cbab1da afb6dea dd21ebf b90f766 cbab1da dd21ebf cbab1da dd21ebf afb6dea dd21ebf afb6dea b90f766 afb6dea b90f766 cbab1da dd21ebf afb6dea b90f766 afb6dea b90f766 dd21ebf afb6dea dd21ebf b90f766 afb6dea b90f766 dd21ebf afb6dea b90f766 afb6dea b90f766 afb6dea b90f766 dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea cbab1da afb6dea b90f766 dd21ebf afb6dea dd21ebf cbab1da dd21ebf cbab1da dd21ebf afb6dea dd21ebf afb6dea dd21ebf cbab1da dd21ebf cbab1da dd21ebf afb6dea dd21ebf b90f766 dd21ebf afb6dea dd21ebf cbab1da dd21ebf afb6dea b90f766 dd21ebf b90f766 afb6dea dd21ebf b90f766 afb6dea dd21ebf afb6dea dd21ebf b90f766 afb6dea b90f766 afb6dea dd21ebf afb6dea dd21ebf b90f766 cbab1da afb6dea dd21ebf afb6dea dd21ebf b90f766 afb6dea cbab1da afb6dea cbab1da afb6dea cbab1da afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf cbab1da dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf cbab1da dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf cbab1da dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea dd21ebf afb6dea cbab1da dd21ebf afb6dea b90f766 afb6dea b90f766 afb6dea dd21ebf afb6dea dd21ebf afb6dea cbab1da dd21ebf afb6dea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import pandas as pd
import requests
from bs4 import BeautifulSoup
import os
import re
import random
from dotenv import load_dotenv # For local testing with a .env file
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import gradio as gr
import time
# --- Configuration ---
load_dotenv() # Loads HF_TOKEN and TMDB_API_KEY from .env for local testing
# SECRETS - These will be read from Hugging Face Space Secrets when deployed
TMDB_API_KEY = os.environ.get("TMDB_API_KEY")
HF_TOKEN = os.environ.get("HF_TOKEN") # Essential for gated models like ALLaM
MODEL_NAME = "ALLaM-AI/ALLaM-7B-Instruct-preview" # Target ALLaM model
BASE_TMDB_URL = "https://api.themoviedb.org/3"
POSTER_BASE_URL = "https://image.tmdb.org/t/p/w500"
NUM_RECOMMENDATIONS_TO_DISPLAY = 5
MIN_RATING_FOR_SEED = 3.5
MIN_VOTE_COUNT_TMDB = 100 # Minimum votes on TMDB for a movie to be considered
# --- Global Variables for Data & Model (Load once) ---
df_profile_global = None
df_watchlist_global = None
df_reviews_global = None
df_diary_global = None
df_ratings_global = None
df_watched_global = None # This will be a consolidated df
uri_to_movie_map_global = {}
all_watched_titles_global = set()
watchlist_titles_global = set()
favorite_film_details_global = []
seed_movies_global = []
llm_pipeline = None
llm_tokenizer = None
# --- Helper Functions ---
def clean_html(raw_html):
if pd.isna(raw_html) or raw_html is None: return ""
text = str(raw_html)
text = re.sub(r'<br\s*/?>', '\n', text) # Convert <br> to newlines
soup = BeautifulSoup(text, "html.parser")
return soup.get_text(separator=" ", strip=True)
def get_movie_uri_map(dfs_dict):
uri_map = {}
df_priority = ['reviews.csv', 'diary.csv', 'ratings.csv', 'watched.csv', 'watchlist.csv']
processed_uris = set()
for df_name in df_priority:
df = dfs_dict.get(df_name)
if df is not None and 'Letterboxd URI' in df.columns and 'Name' in df.columns and 'Year' in df.columns:
for _, row in df.iterrows():
uri = row['Letterboxd URI']
if pd.notna(uri) and uri not in processed_uris:
if pd.notna(row['Name']) and pd.notna(row['Year']):
try:
year = int(row['Year'])
uri_map[uri] = (str(row['Name']), year)
processed_uris.add(uri)
except ValueError:
# Silently skip if year is not a valid integer for URI mapping
pass
return uri_map
def load_all_data():
global df_profile_global, df_watchlist_global, df_reviews_global, df_diary_global
global df_ratings_global, df_watched_global, uri_to_movie_map_global, all_watched_titles_global
global watchlist_titles_global, favorite_film_details_global, seed_movies_global
try:
# Assumes CSV files are in the root of the Hugging Face Space
df_profile_global = pd.read_csv("profile.csv")
# df_comments_global = pd.read_csv("comments.csv") # Not directly used in recs logic
df_watchlist_global = pd.read_csv("watchlist.csv")
df_reviews_global = pd.read_csv("reviews.csv")
df_diary_global = pd.read_csv("diary.csv")
df_ratings_global = pd.read_csv("ratings.csv")
_df_watched_log = pd.read_csv("watched.csv") # Raw log of watched films
except FileNotFoundError as e:
print(f"CRITICAL ERROR: CSV file not found: {e}. Ensure all CSVs are uploaded to the HF Space root.")
return False # Indicate failure to load data
dfs_for_uri_map = {
"reviews.csv": df_reviews_global, "diary.csv": df_diary_global,
"ratings.csv": df_ratings_global, "watched.csv": _df_watched_log,
"watchlist.csv": df_watchlist_global
}
uri_to_movie_map_global = get_movie_uri_map(dfs_for_uri_map)
df_diary_global.rename(columns={'Rating': 'Diary Rating'}, inplace=True)
df_reviews_global.rename(columns={'Rating': 'Review Rating', 'Review': 'Review Text'}, inplace=True)
df_ratings_global.rename(columns={'Rating': 'Simple Rating'}, inplace=True)
consolidated = df_reviews_global[['Letterboxd URI', 'Name', 'Year', 'Review Rating', 'Review Text', 'Watched Date']].copy()
consolidated.rename(columns={'Review Rating': 'Rating'}, inplace=True)
diary_subset = df_diary_global[['Letterboxd URI', 'Name', 'Year', 'Diary Rating', 'Watched Date']].copy()
diary_subset.rename(columns={'Diary Rating': 'Rating_diary', 'Watched Date': 'Watched Date_diary'}, inplace=True)
consolidated = pd.merge(consolidated, diary_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_diary'))
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_diary'])
consolidated['Watched Date'] = consolidated['Watched Date'].fillna(consolidated['Watched Date_diary'])
consolidated.drop(columns=['Rating_diary', 'Watched Date_diary'], inplace=True)
ratings_subset = df_ratings_global[['Letterboxd URI', 'Name', 'Year', 'Simple Rating']].copy()
ratings_subset.rename(columns={'Simple Rating': 'Rating_simple'}, inplace=True)
consolidated = pd.merge(consolidated, ratings_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer', suffixes=('', '_simple'))
consolidated['Rating'] = consolidated['Rating'].fillna(consolidated['Rating_simple'])
consolidated.drop(columns=['Rating_simple'], inplace=True)
watched_log_subset = _df_watched_log[['Letterboxd URI', 'Name', 'Year']].copy()
watched_log_subset['from_watched_log'] = True
consolidated = pd.merge(consolidated, watched_log_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer')
consolidated['from_watched_log'] = consolidated['from_watched_log'].fillna(False).astype(bool)
consolidated['Review Text'] = consolidated['Review Text'].fillna('').apply(clean_html)
consolidated['Year'] = pd.to_numeric(consolidated['Year'], errors='coerce').astype('Int64')
consolidated.dropna(subset=['Name', 'Year'], inplace=True) # Ensure essential fields are present
consolidated.drop_duplicates(subset=['Name', 'Year'], keep='first', inplace=True)
df_watched_global = consolidated
all_watched_titles_global = set(zip(df_watched_global['Name'].astype(str), df_watched_global['Year'].astype(int)))
for _, row in _df_watched_log.iterrows():
if pd.notna(row['Name']) and pd.notna(row['Year']):
try: all_watched_titles_global.add((str(row['Name']), int(row['Year'])))
except ValueError: pass
if df_watchlist_global is not None:
watchlist_titles_global = set()
for _, row in df_watchlist_global.iterrows():
if pd.notna(row['Name']) and pd.notna(row['Year']):
try: watchlist_titles_global.add((str(row['Name']), int(row['Year'])))
except ValueError: pass
favorite_film_details_global = []
if df_profile_global is not None and 'Favorite Films' in df_profile_global.columns and not df_profile_global.empty:
fav_uris_str = df_profile_global.iloc[0]['Favorite Films']
if pd.notna(fav_uris_str):
fav_uris = [uri.strip() for uri in fav_uris_str.split(',')]
for uri in fav_uris:
if uri in uri_to_movie_map_global:
name, year = uri_to_movie_map_global[uri]
match = df_watched_global[(df_watched_global['Name'] == name) & (df_watched_global['Year'] == year)]
rating = match['Rating'].iloc[0] if not match.empty and pd.notna(match['Rating'].iloc[0]) else None
review = match['Review Text'].iloc[0] if not match.empty and match['Review Text'].iloc[0] else ""
favorite_film_details_global.append({'name': name, 'year': year, 'rating': rating, 'review_text': review, 'uri': uri})
seed_movies_global.extend(favorite_film_details_global)
if not df_watched_global.empty: # Ensure df_watched_global is not empty
highly_rated_df = df_watched_global[df_watched_global['Rating'] >= MIN_RATING_FOR_SEED]
favorite_uris = {fav['uri'] for fav in favorite_film_details_global if 'uri' in fav}
for _, row in highly_rated_df.iterrows():
if row['Letterboxd URI'] not in favorite_uris:
seed_movies_global.append({
'name': row['Name'], 'year': row['Year'], 'rating': row['Rating'],
'review_text': row['Review Text'], 'uri': row['Letterboxd URI']
})
if seed_movies_global: # Only process if seed_movies_global is not empty
temp_df = pd.DataFrame(seed_movies_global)
if not temp_df.empty:
temp_df.drop_duplicates(subset=['name', 'year'], keep='first', inplace=True)
seed_movies_global = temp_df.to_dict('records')
else:
seed_movies_global = []
random.shuffle(seed_movies_global)
return True
def initialize_llm():
global llm_pipeline, llm_tokenizer
if llm_pipeline is None: # Proceed only if pipeline is not already initialized
print(f"Attempting to initialize LLM: {MODEL_NAME}")
if not HF_TOKEN:
print("CRITICAL ERROR: HF_TOKEN environment variable not set. Cannot access gated model.")
return # Stop initialization if token is missing
try:
llm_tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
token=HF_TOKEN,
use_fast=False # Using slow tokenizer as per previous debugging for SentencePiece
)
print(f"Tokenizer for {MODEL_NAME} loaded.")
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto", # Automatically map to available device
load_in_8bit=True, # Enable 8-bit quantization; requires bitsandbytes
trust_remote_code=True,
token=HF_TOKEN
)
print(f"Model {MODEL_NAME} loaded.")
if llm_tokenizer.pad_token is None:
print("Tokenizer pad_token is None, setting to eos_token.")
llm_tokenizer.pad_token = llm_tokenizer.eos_token
if model.config.pad_token_id is None: # Also update model config if needed
model.config.pad_token_id = model.config.eos_token_id
print(f"Model config pad_token_id set to: {model.config.pad_token_id}")
llm_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=llm_tokenizer
)
print(f"LLM pipeline for {MODEL_NAME} initialized successfully.")
except Exception as e:
print(f"ERROR during LLM initialization ({MODEL_NAME}): {e}")
# Ensure these are reset if initialization fails partway
llm_pipeline = None
llm_tokenizer = None
# --- TMDB API Functions ---
def search_tmdb_movie_details(title, year):
if not TMDB_API_KEY:
print("CRITICAL ERROR: TMDB_API_KEY not configured.")
return None
try:
search_url = f"{BASE_TMDB_URL}/search/movie"
params = {'api_key': TMDB_API_KEY, 'query': title, 'year': year, 'language': 'en-US'}
response = requests.get(search_url, params=params)
response.raise_for_status()
results = response.json().get('results', [])
if results:
movie = results[0]
movie_details_url = f"{BASE_TMDB_URL}/movie/{movie['id']}"
details_params = {'api_key': TMDB_API_KEY, 'language': 'en-US'}
details_response = requests.get(movie_details_url, params=details_params)
details_response.raise_for_status()
movie_full_details = details_response.json()
return {
'id': movie.get('id'), 'title': movie.get('title'),
'year': str(movie.get('release_date', ''))[:4], 'overview': movie.get('overview'),
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster",
'genres': [genre['name'] for genre in movie_full_details.get('genres', [])],
'vote_average': movie.get('vote_average'), 'vote_count': movie.get('vote_count'),
'popularity': movie.get('popularity')
}
time.sleep(0.3) # Slightly increased delay for API calls
except requests.RequestException as e: print(f"TMDB API Error (search) for {title} ({year}): {e}")
except Exception as ex: print(f"Unexpected error in TMDB search for {title} ({year}): {ex}")
return None
def get_tmdb_recommendations(movie_id, page=1):
if not TMDB_API_KEY:
print("CRITICAL ERROR: TMDB_API_KEY not configured.")
return []
recommendations = []
try:
rec_url = f"{BASE_TMDB_URL}/movie/{movie_id}/recommendations"
params = {'api_key': TMDB_API_KEY, 'page': page, 'language': 'en-US'}
response = requests.get(rec_url, params=params)
response.raise_for_status()
results = response.json().get('results', [])
for movie in results:
if movie.get('vote_count', 0) >= MIN_VOTE_COUNT_TMDB:
recommendations.append({
'id': movie.get('id'), 'title': movie.get('title'),
'year': str(movie.get('release_date', ''))[:4] if movie.get('release_date') else "N/A",
'overview': movie.get('overview'),
'poster_path': POSTER_BASE_URL + movie.get('poster_path') if movie.get('poster_path') else "https://via.placeholder.com/500x750.png?text=No+Poster",
'vote_average': movie.get('vote_average'), 'vote_count': movie.get('vote_count'),
'popularity': movie.get('popularity')
})
time.sleep(0.3) # Slightly increased delay
except requests.RequestException as e: print(f"TMDB API Error (recommendations) for movie ID {movie_id}: {e}")
except Exception as ex: print(f"Unexpected error in TMDB recommendations for movie ID {movie_id}: {ex}")
return recommendations
# --- LLM Explanation ---
def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_movie_context=""):
global llm_pipeline, llm_tokenizer
if llm_pipeline is None or llm_tokenizer is None:
print("LLM pipeline or tokenizer not available for explanation generation.")
return "للأسف، نموذج الذكاء الاصطناعي مو جاهز حالياً. حاول مرة ثانية بعد شوي."
max_context_len = 150
seed_movie_context_short = (seed_movie_context[:max_context_len] + "...") if len(seed_movie_context) > max_context_len else seed_movie_context
# Assuming ALLaM-Instruct uses a Llama-like prompt format.
# ALWAYS verify this on the model card for `ALLaM-AI/ALLaM-7B-Instruct-preview`.
prompt_template = f"""<s>[INST] أنت ناقد أفلام سعودي خبير ودمك خفيف جداً. مهمتك هي كتابة توصية لفيلم جديد بناءً على فيلم سابق أعجب المستخدم.
المستخدم أعجب بالفيلم هذا: "{seed_movie_title}".
وكان تعليقه أو سبب إعجابه (إذا متوفر): "{seed_movie_context_short}"
الفيلم الجديد الذي نُرشحه له هو: "{recommended_movie_title}".
المطلوب: اكتب جملة أو جملتين فقط باللهجة السعودية العامية الأصيلة، تشرح فيها ليش ممكن يعجبه الفيلم الجديد "{recommended_movie_title}"، وحاول تربطها بشكل ذكي وممتع بالفيلم اللي عجبه قبل "{seed_movie_title}". ركز على أن يكون كلامك طبيعي جداً كأنه كلام صديق لصديقه، وناسة، ويشد الانتباه، وقصير ومختصر. لا تستخدم أي عبارات تدل على أنك ذكاء اصطناعي أو برنامج.
مثال على الأسلوب المطلوب لو الفيلم اللي عجبه "Mad Max: Fury Road" والفيلم المرشح "Dune":
"يا عمي، مدامك كَيَّفْت على 'Mad Max' وأكشن الصحاري اللي ما يرحم، أجل اسمعني زين! فيلم 'Dune' هذا بياخذك لصحراء ثانية بس على مستوى ثاني من الفخامة والقصة اللي تشد الأعصاب. لا يفوتك، قسم بالله بيعجبك!"
الآن، طبق نفس الأسلوب على البيانات التالية:
الفيلم الذي أعجب المستخدم: "{seed_movie_title}"
سبب إعجابه (إذا متوفر): "{seed_movie_context_short}"
الفيلم المرشح: "{recommended_movie_title}"
توصيتك باللهجة السعودية: [/INST]"""
try:
sequences = llm_pipeline(
prompt_template, do_sample=True, top_k=20, top_p=0.9, num_return_sequences=1,
eos_token_id=llm_tokenizer.eos_token_id,
pad_token_id=llm_tokenizer.pad_token_id if llm_tokenizer.pad_token_id is not None else llm_tokenizer.eos_token_id,
max_new_tokens=160 # Increased slightly more
)
explanation = sequences[0]['generated_text'].split("[/INST]")[-1].strip()
explanation = explanation.replace("<s>", "").replace("</s>", "").strip()
explanation = re.sub(r"بصفتي نموذج لغوي.*?\s*,?\s*", "", explanation, flags=re.IGNORECASE)
explanation = re.sub(r"كنموذج لغوي.*?\s*,?\s*", "", explanation, flags=re.IGNORECASE)
if not explanation or explanation.lower().startswith("أنت ناقد أفلام") or len(explanation) < 20 :
print(f"LLM explanation for '{recommended_movie_title}' was too short or poor. Falling back.")
return f"شكلك بتنبسط على فيلم '{recommended_movie_title}' لأنه يشبه جو فيلم '{seed_movie_title}' اللي حبيته! عطيه تجربة."
return explanation
except Exception as e:
print(f"ERROR during LLM generation with {MODEL_NAME}: {e}")
return f"يا كابتن، شكلك بتحب '{recommended_movie_title}'، خاصة إنك استمتعت بـ'{seed_movie_title}'. جربه وعطنا رأيك!"
# --- Recommendation Logic ---
def get_recommendations(progress=gr.Progress(track_tqdm=True)):
if not TMDB_API_KEY:
return "<p style='color:red; text-align:right;'>خطأ: مفتاح TMDB API مو موجود أو غير صحيح. الرجاء التأكد من إضافته كـ Secret بشكل صحيح في إعدادات الـ Space.</p>"
if not all([df_profile_global is not None, df_watched_global is not None, seed_movies_global is not None]): # seed_movies_global can be empty list
return "<p style='color:red; text-align:right;'>خطأ: فشل في تحميل بيانات المستخدم. تأكد من رفع ملفات CSV بشكل صحيح.</p>"
if llm_pipeline is None: # Ensure LLM is ready
initialize_llm() # Try to initialize if it wasn't at startup
if llm_pipeline is None:
return "<p style='color:red; text-align:right;'>خطأ: فشل في تهيئة نموذج الذكاء الاصطناعي. تأكد من وجود HF_TOKEN صحيح وأن لديك صلاحية الوصول للنموذج المحدد.</p>"
if not seed_movies_global: # Check if seed_movies list is empty after loading
return "<p style='text-align:right;'>ما لقينا أفلام مفضلة أو مقيمة تقييم عالي كفاية عشان نبني عليها توصيات. حاول تقيّم بعض الأفلام!</p>"
progress(0.1, desc="نجمع أفلامك المفضلة...")
potential_recs = {}
# Limit number of seeds to process to avoid excessive API calls / long processing
seeds_to_process = seed_movies_global[:20] if len(seed_movies_global) > 20 else seed_movies_global
for i, seed_movie in enumerate(seeds_to_process):
progress(0.1 + (i / len(seeds_to_process)) * 0.4, desc=f"نبحث عن توصيات بناءً على: {seed_movie.get('name', 'فيلم غير معروف')}")
seed_tmdb_details = search_tmdb_movie_details(seed_movie.get('name'), seed_movie.get('year'))
if seed_tmdb_details and seed_tmdb_details.get('id'):
tmdb_recs = get_tmdb_recommendations(seed_tmdb_details['id'])
for rec in tmdb_recs:
try:
# Ensure year is a valid integer for tuple creation
year_val = int(rec['year']) if rec.get('year') and str(rec['year']).isdigit() else None
if year_val is None: continue # Skip if year is invalid
rec_tuple = (str(rec['title']), year_val)
if rec.get('id') and rec_tuple not in all_watched_titles_global and rec_tuple not in watchlist_titles_global:
if rec['id'] not in potential_recs: # Add if new
potential_recs[rec['id']] = {
'movie_info': rec,
'seed_movie_title': seed_movie.get('name'),
'seed_movie_context': seed_movie.get('review_text', '') or seed_movie.get('comment_text', '')
}
except (ValueError, TypeError) as e:
# print(f"Skipping recommendation due to data issue: {rec.get('title')} - {e}")
continue
if not potential_recs:
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً بناءً على أفلامك المفضلة. يمكن شفت كل شيء رهيب! 😉</p>"
# Sort recommendations by TMDB popularity
sorted_recs_list = sorted(potential_recs.values(), key=lambda x: x['movie_info'].get('popularity', 0), reverse=True)
final_recommendations_data = []
displayed_ids = set()
for rec_data in sorted_recs_list:
if len(final_recommendations_data) >= NUM_RECOMMENDATIONS_TO_DISPLAY: break
if rec_data['movie_info']['id'] not in displayed_ids:
final_recommendations_data.append(rec_data)
displayed_ids.add(rec_data['movie_info']['id'])
if not final_recommendations_data:
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً بعد الفلترة. يمكن شفت كل شيء رهيب! 😉</p>"
output_html = "<div style='padding: 10px;'>" # Main container with some padding
progress(0.6, desc="نجهز لك الشرح باللغة العامية...")
for i, rec_data in enumerate(final_recommendations_data):
progress(0.6 + (i / len(final_recommendations_data)) * 0.4, desc=f"نكتب شرح لفيلم: {rec_data['movie_info']['title']}")
explanation = generate_saudi_explanation(
rec_data['movie_info']['title'], rec_data['seed_movie_title'], rec_data['seed_movie_context']
)
poster_url = rec_data['movie_info']['poster_path']
# Fallback for missing posters
if not poster_url or "No+Poster" in poster_url or "placeholder.com" in poster_url :
poster_url = f"https://via.placeholder.com/300x450.png?text={requests.utils.quote(rec_data['movie_info']['title'])}"
output_html += f"""
<div style="display: flex; flex-direction: row-reverse; align-items: flex-start; margin-bottom: 25px; border-bottom: 1px solid #ddd; padding-bottom:15px; background-color: #f9f9f9; border-radius: 8px; padding: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
<img src="{poster_url}" alt="{rec_data['movie_info']['title']}" style="width: 150px; max-width:30%; height: auto; margin-left: 20px; border-radius: 5px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);">
<div style="text-align: right; direction: rtl; flex-grow: 1;">
<h3 style="margin-top:0; color: #c70039;">{rec_data['movie_info']['title']} ({rec_data['movie_info']['year']})</h3>
<p style="font-size: 1.1em; color: #333; line-height: 1.6;">{explanation}</p>
<p style="font-size: 0.9em; color: #555; margin-top: 10px;"><em><strong style="color:#c70039;">السبب:</strong> حبيّت فيلم <strong style="color:#333;">{rec_data['seed_movie_title']}</strong></em></p>
</div>
</div>"""
output_html += "</div>"
return gr.HTML(output_html)
# --- Gradio Interface ---
css_theme = """
body { font-family: 'Tajawal', sans-serif; }
.gradio-container { font-family: 'Tajawal', sans-serif !important; direction: rtl; max-width: 900px !important; margin: auto !important; }
footer { display: none !important; }
.gr-button { background-color: #c70039 !important; color: white !important; font-size: 1.2em !important; padding: 12px 24px !important; border-radius: 8px !important; font-weight: bold; }
.gr-button:hover { background-color: #a3002f !important; box-shadow: 0 2px 5px rgba(0,0,0,0.2); }
h1 { color: #900c3f !important; }
.gr-html-output h3 { color: #c70039 !important; } /* Style h3 within the HTML output specifically */
"""
# Attempt to load data and LLM at startup
data_loaded_successfully = load_all_data()
if data_loaded_successfully:
print("User data loaded successfully.")
# LLM initialization will be attempted when the Gradio app starts,
# or on the first click if it failed at startup.
# initialize_llm() # Call it here to attempt loading at startup
else:
print("CRITICAL: Failed to load user data. App functionality will be limited.")
# It's better to initialize LLM once the app blocks are defined,
# or trigger it on first use if it's very resource-intensive at startup.
# For Spaces, startup initialization is fine.
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink", font=[gr.themes.GoogleFont("Tajawal"), "sans-serif"]), css=css_theme) as iface:
gr.Markdown(
"""
<div style="text-align: center; margin-bottom:20px;">
<h1 style="color: #c70039; font-size: 2.8em; font-weight: bold; margin-bottom:5px;">🎬 رفيقك السينمائي 🍿</h1>
<p style="font-size: 1.2em; color: #555;">يا هلا بك! اضغط الزر تحت وخلنا نعطيك توصيات أفلام على كيف كيفك، مع شرح بالعامية ليش ممكن تدخل مزاجك.</p>
</div>"""
)
recommend_button = gr.Button("عطني توصيات أفلام جديدة!")
with gr.Column(elem_id="recommendation-output-column"): # Added elem_id for potential specific styling
output_recommendations = gr.HTML(label="👇 توصياتك النارية وصلت 👇")
# Initialize LLM when the Blocks context is active, after data loading attempt
if data_loaded_successfully:
initialize_llm()
recommend_button.click(fn=get_recommendations, inputs=None, outputs=[output_recommendations], show_progress="full")
gr.Markdown(
"""
<div style="text-align: center; margin-top: 40px; padding-top: 20px; border-top: 1px solid #eee; font-size: 0.9em; color: #777;">
<p>نتمنى لك مشاهدة ممتعة مع رفيقك السينمائي! 🎥✨</p>
</div>"""
)
if __name__ == "__main__":
# Print warnings if critical secrets are missing when running locally
if not TMDB_API_KEY:
print("\nCRITICAL WARNING: TMDB_API_KEY environment variable is NOT SET.")
print("TMDB API calls will fail. Please set it in your .env file or system environment.\n")
if not HF_TOKEN:
print("\nCRITICAL WARNING: HF_TOKEN environment variable is NOT SET.")
print(f"LLM initialization for gated models like {MODEL_NAME} will fail. Please set it.\n")
iface.launch(debug=True) # debug=True for local testing, set to False for production |