File size: 3,790 Bytes
ff13394
 
eae8c8b
ff13394
 
 
 
7e1e741
9a5bfef
 
 
ff13394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1e741
ff13394
 
d8b7a9d
7e1e741
ff13394
7e1e741
08b8cd7
7e1e741
ff13394
 
c176b63
ff13394
 
 
 
 
 
7e1e741
 
c176b63
7e1e741
 
 
 
ff13394
7e1e741
 
 
ff13394
 
 
eae8c8b
 
 
 
 
 
 
 
 
 
 
 
 
ff13394
 
 
 
d8b7a9d
176294d
08b8cd7
 
 
 
 
 
ff13394
 
 
7e1e741
176294d
ff13394
 
 
 
0f03893
ff13394
 
 
0f03893
 
ff13394
176294d
ff13394
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import torch.nn as nn
from flask import Flask, request, jsonify, render_template, make_response, send_from_directory
from flask_cors import CORS
import io
import os
from PIL import Image
from diffusers import StableDiffusionPipeline
import os

token = os.getenv("HF_TOKEN")

# Define the MIDM model
class MIDM(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(MIDM, self).__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_dim, output_dim)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.sigmoid(out)
        return out

app = Flask(__name__, static_folder='static', template_folder='templates')
CORS(app)

# Load models once when the app starts to avoid reloading for each request
stable_diff_pipe = None
model = None

def load_models(model_name="CompVis/stable-diffusion-v1-4"):
    global stable_diff_pipe, model
    
    # Load Stable Diffusion model pipeline
    stable_diff_pipe = StableDiffusionPipeline.from_pretrained(model_name)
    stable_diff_pipe.to("cuda" if torch.cuda.is_available() else "cpu")
    
    # Initialize MIDM model
    input_dim = 10  
    hidden_dim = 64
    output_dim = 1
    model = MIDM(input_dim, hidden_dim, output_dim)
    
    model.eval()

# Function to extract features from the image using Stable Diffusion
def extract_image_features(image):
    #Extracts image features using the Stable Diffusion pipeline.
    # Preprocess the image and get the feature vector
    image_input = stable_diff_pipe.feature_extractor(image, return_tensors="pt").pixel_values.to(stable_diff_pipe.device)
    
    # Generate the image embedding using the model
    with torch.no_grad():
        generated_features = stable_diff_pipe.vae.encode(image_input).latent_dist.mean

    return generated_features

@app.route('/')
def index():
    return send_from_directory('.', 'index.html')

@app.route('/resources')
def resources():
    return send_from_directory('.', 'resources.html')

@app.route('/get-organized')
def get_organized():
    return send_from_directory('.', 'get-organized.html')

@app.route('/static/<path:filename>')
def static_files(filename):
    return send_from_directory('static', filename)

@app.route('/api/check-membership', methods=['POST'])
def check_membership():
    try:
        model_name = request.form.get('model', 'CompVis/stable-diffusion-v1-4')
        global stable_diff_pipe, model
        if stable_diff_pipe is None or model is None:
            load_models(model_name)
        elif stable_diff_pipe.name_or_path != model_name:
            load_models(model_name)
        if 'image' not in request.files:
            return jsonify({'error': 'No image found in request'}), 400
        file = request.files['image']
        image_bytes = file.read()
        image = Image.open(io.BytesIO(image_bytes))
        image_features = extract_image_features(image)
        processed_features = image_features.reshape(1, -1)[:, :10]
        with torch.no_grad():
            output = model(processed_features)
            probability = output.item()
            predicted = int(output > 0.5)
        return jsonify({
            'probability': probability,
            'predicted_class': predicted,
            'message': f"Predicted membership probability: {probability}",
            'is_in_training_data': "Likely" if predicted == 1 else "Unlikely"
        })
    except Exception as e:
        print(f"Error processing request: {str(e)}")
        return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
    port = int(os.environ.get('PORT', 7860))
    app.run(host='0.0.0.0', port=port)