Spaces:
Running
on
A10G
Running
on
A10G
File size: 6,943 Bytes
f360117 447c576 f360117 93f11bd a22a221 f360117 447c576 c8ea988 447c576 f360117 e35bd8b 447c576 e35bd8b 7dcdfac f360117 2990438 8b05017 2990438 f360117 447c576 baada04 f360117 2bc76ca f360117 7dcdfac f360117 5d2597e f360117 04f075c 6c62bb5 7dcdfac f360117 5d2597e f360117 5d2597e ae7b7f1 f360117 5d2597e 7dcdfac f360117 00de940 7dcdfac f360117 7dcdfac f360117 7dcdfac f360117 7dcdfac f360117 eeadab2 f360117 7dcdfac 5663ecc a57acc8 447c576 f360117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
DEVICE = 'cpu'
import gradio as gr
import numpy as np
from sklearn.svm import LinearSVC
from sklearn import preprocessing
import pandas as pd
from diffusers import LCMScheduler
from diffusers.models import ImageProjection
from patch_sdxl import SDEmb
import torch
import spaces
import random
import time
import torch
from urllib.request import urlopen
from PIL import Image
import requests
from io import BytesIO, StringIO
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
start_time = time.time()
####################### Setup Model
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
pipe = SDEmb.from_pretrained(model_id, variant="fp16", low_cpu_mem_usage=True, device_map="auto")
pipe.load_lora_weights(lcm_lora_id)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device='cuda', dtype=torch.float16)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
output_hidden_state = False
#######################
@spaces.GPU
def predict(
prompt,
im_emb=None,
):
"""Run a single prediction on the model"""
with torch.no_grad():
if im_emb == None:
im_emb = torch.zeros(1, 1280, dtype=torch.float16, device='cuda')
else:
im_emb = torch.tensor([float(i) for i in im_emb.split(', ')]).unsqueeze(0).to(dtype=torch.float16).to('cuda')
image = pipe(
prompt=prompt,
ip_adapter_emb=im_emb,
height=1024,
width=1024,
num_inference_steps=8,
guidance_scale=0,
).images[0]
im_emb, _ = pipe.encode_image(
image, 'cuda', 1, output_hidden_state
)
return image, im_emb.to(DEVICE)
# TODO add to state instead of shared across all
glob_idx = 0
def next_image(embs, ys, calibrate_prompts):
global glob_idx
glob_idx = glob_idx + 1
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
if len(calibrate_prompts) == 0 and len(list(set(ys))) <= 1:
embs.append(.01*torch.randn(1, 1280))
embs.append(.01*torch.randn(1, 1280))
ys.append(0)
ys.append(1)
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample prompts #########')
prompt = calibrate_prompts.pop(0)
print(prompt)
image, img_emb = predict(prompt)
embs.append(img_emb)
return image, embs, ys, calibrate_prompts
else:
print('######### Roaming #########')
# sample only as many negatives as there are positives
indices = range(len(ys))
pos_indices = [i for i in indices if ys[i] == 1]
neg_indices = [i for i in indices if ys[i] == 0]
lower = min(len(pos_indices), len(neg_indices))
neg_indices = random.sample(neg_indices, lower)
pos_indices = random.sample(pos_indices, lower)
cut_embs = [embs[i] for i in neg_indices] + [embs[i] for i in pos_indices]
cut_ys = [ys[i] for i in neg_indices] + [ys[i] for i in pos_indices]
feature_embs = torch.stack([e[0].detach().cpu() for e in cut_embs])
scaler = preprocessing.StandardScaler().fit(feature_embs)
feature_embs = scaler.transform(feature_embs)
print(np.array(feature_embs).shape, np.array(ys).shape)
lin_class = LinearSVC(max_iter=50000, dual='auto', class_weight='balanced').fit(np.array(feature_embs), np.array(cut_ys))
lin_class.coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
lin_class.coef_ = (lin_class.coef_.flatten() / (lin_class.coef_.flatten().norm())).unsqueeze(0)
rng_prompt = random.choice(prompt_list)
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * lin_class.coef_.to(device=DEVICE, dtype=torch.float16)
prompt= 'an image' if glob_idx % 2 == 0 else rng_prompt
print(prompt)
image, im_emb = predict(prompt, im_emb)
embs.append(im_emb)
return image, embs, ys, calibrate_prompts
def start(_, embs, ys, calibrate_prompts):
image, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return [
gr.Button(value='Like', interactive=True),
gr.Button(value='Neither', interactive=True),
gr.Button(value='Dislike', interactive=True),
gr.Button(value='Start', interactive=False),
image,
embs,
ys,
calibrate_prompts
]
def choose(choice, embs, ys, calibrate_prompts):
if choice == 'Like':
choice = 1
elif choice == 'Neither':
_ = embs.pop(-1)
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return img, embs, ys, calibrate_prompts
else:
choice = 0
ys.append(choice)
img, embs, ys, calibrate_prompts = next_image(embs, ys, calibrate_prompts)
return img, embs, ys, calibrate_prompts
css = "div#output-image {height: 768px !important; width: 768px !important; margin:auto;}"
with gr.Blocks(css=css) as demo:
embs = gr.State([])
ys = gr.State([])
calibrate_prompts = gr.State([
"4k photo",
'surrealist art',
# 'a psychedelic, fractal view',
'a beautiful collage',
'abstract art',
'an eldritch image',
'a sketch',
# 'a city full of darkness and graffiti',
'',
])
with gr.Row(elem_id='output-image'):
img = gr.Image(interactive=False, elem_id='output-image',)
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike', interactive=False,)
b2 = gr.Button(value='Neither', interactive=False,)
b1 = gr.Button(value='Like', interactive=False,)
b1.click(
choose,
[b1, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
b2.click(
choose,
[b2, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
b3.click(
choose,
[b3, embs, ys, calibrate_prompts],
[img, embs, ys, calibrate_prompts]
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, embs, ys, calibrate_prompts],
[b1, b2, b3, b4, img, embs, ys, calibrate_prompts])
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:32'>You will calibrate for several prompts and then roam.</ div>''')
demo.launch() # Share your demo with just 1 extra parameter 🚀 |