Spaces:
Runtime error
Runtime error
File size: 12,269 Bytes
c5ca37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# -*- coding: utf-8 -*-
"""message_bottle.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1I47sLakpuwERGzn-XoNct67mwiDS1mQD
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
torch.set_float32_matmul_precision('high')
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM
class BottleneckT5Autoencoder:
def __init__(self, model_path: str, device='cuda'):
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512, torch_dtype=torch.bfloat16)
self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(self.device)
self.model.eval()
# self.model = torch.compile(self.model)
def embed(self, text: str) -> torch.FloatTensor:
inputs = self.tokenizer(text, return_tensors='pt', padding=True).to(self.device)
decoder_inputs = self.tokenizer('', return_tensors='pt').to(self.device)
return self.model(
**inputs,
decoder_input_ids=decoder_inputs['input_ids'],
encode_only=True,
)
def generate_from_latent(self, latent: torch.FloatTensor, max_length=512, temperature=1., top_p=.8, length_penalty=10, min_new_tokens=30) -> str:
dummy_text = '.'
dummy = self.embed(dummy_text)
perturb_vector = latent - dummy
self.model.perturb_vector = perturb_vector
input_ids = self.tokenizer(dummy_text, return_tensors='pt').to(self.device).input_ids
output = self.model.generate(
input_ids=input_ids,
max_length=max_length,
do_sample=True,
temperature=temperature,
top_p=top_p,
num_return_sequences=1,
length_penalty=length_penalty,
min_new_tokens=min_new_tokens,
# num_beams=8,
)
return self.tokenizer.decode(output[0], skip_special_tokens=True)
autoencoder = BottleneckT5Autoencoder(model_path='thesephist/contra-bottleneck-t5-xl-wikipedia')
import gradio as gr
import numpy as np
from sklearn.svm import SVC
from sklearn.inspection import permutation_importance
from sklearn import preprocessing
import pandas as pd
import random
import time
dtype = torch.bfloat16
torch.set_grad_enabled(False)
prompt_list = [p for p in list(set(
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]
start_time = time.time()
####################### Setup Model
# TODO put back
# @spaces.GPU()
def generate(prompt, in_embs=None,):
if prompt != '':
print(prompt)
in_embs = in_embs / in_embs.abs().max() * .15 if in_embs != None else None
in_embs = .9 * in_embs.to('cuda') + .5 * autoencoder.embed(prompt).to('cuda') if in_embs != None else autoencoder.embed(prompt).to('cuda')
else:
print('From embeds.')
in_embs = in_embs / in_embs.abs().max() * .15
text = autoencoder.generate_from_latent(in_embs.to('cuda'), temperature=.3, top_p=.99, min_new_tokens=5)
in_embs = autoencoder.embed(prompt)
return text, in_embs.to('cpu')
#######################
# TODO add to state instead of shared across all
glob_idx = 0
def next_one(embs, ys, calibrate_prompts):
global glob_idx
glob_idx = glob_idx + 1
with torch.no_grad():
if len(calibrate_prompts) > 0:
print('######### Calibrating with sample prompts #########')
prompt = calibrate_prompts.pop(0)
print(prompt)
text, img_embs = generate(prompt)
embs += img_embs
print(len(embs))
return text, embs, ys, calibrate_prompts
else:
print('######### Roaming #########')
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
if len(list(set(ys))) <= 1:
embs.append(.01*torch.randn(2048))
embs.append(.01*torch.randn(2048))
ys.append(0)
ys.append(1)
if len(list(ys)) < 10:
embs += [.01*torch.randn(2048)] * 3
ys += [0] * 3
pos_indices = [i for i in range(len(embs)) if ys[i] == 1]
neg_indices = [i for i in range(len(embs)) if ys[i] == 0]
# the embs & ys stay tied by index but we shuffle to drop randomly
random.shuffle(pos_indices)
random.shuffle(neg_indices)
#if len(pos_indices) - len(neg_indices) > 48 and len(pos_indices) > 80:
# pos_indices = pos_indices[32:]
if len(neg_indices) - len(pos_indices) > 48/16 and len(pos_indices) > 6:
pos_indices = pos_indices[5:]
if len(neg_indices) - len(pos_indices) > 48/16 and len(neg_indices) > 6:
neg_indices = neg_indices[5:]
if len(neg_indices) > 25:
neg_indices = neg_indices[1:]
print(len(pos_indices), len(neg_indices))
indices = pos_indices + neg_indices
embs = [embs[i] for i in indices]
ys = [ys[i] for i in indices]
indices = list(range(len(embs)))
# also add the latest 0 and the latest 1
has_0 = False
has_1 = False
for i in reversed(range(len(ys))):
if ys[i] == 0 and has_0 == False:
indices.append(i)
has_0 = True
elif ys[i] == 1 and has_1 == False:
indices.append(i)
has_1 = True
if has_0 and has_1:
break
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
# this ends up adding a rating but losing an embedding, it seems.
# let's take off a rating if so to continue without indexing errors.
if len(ys) > len(embs):
print('ys are longer than embs; popping latest rating')
ys.pop(-1)
feature_embs = np.array(torch.stack([embs[i].to('cpu') for i in indices]).to('cpu'))
scaler = preprocessing.StandardScaler().fit(feature_embs)
feature_embs = scaler.transform(feature_embs)
chosen_y = np.array([ys[i] for i in indices])
print('Gathering coefficients')
lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=.1).fit(feature_embs, chosen_y)
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
coef_ = coef_ / coef_.abs().max() * 3
print(coef_.shape, 'COEF')
print('Gathered')
rng_prompt = random.choice(prompt_list)
w = 1# if len(embs) % 2 == 0 else 0
im_emb = w * coef_.to(dtype=dtype)
prompt= '' if glob_idx % 3 != 0 else rng_prompt
text, im_emb = generate(prompt, im_emb)
embs += im_emb
return text, embs, ys, calibrate_prompts
def start(_, embs, ys, calibrate_prompts):
text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts)
return [
gr.Button(value='Like (L)', interactive=True),
gr.Button(value='Neither (Space)', interactive=True),
gr.Button(value='Dislike (A)', interactive=True),
gr.Button(value='Start', interactive=False),
text,
embs,
ys,
calibrate_prompts
]
def choose(text, choice, embs, ys, calibrate_prompts):
if choice == 'Like (L)':
choice = 1
elif choice == 'Neither (Space)':
embs = embs[:-1]
text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts)
return text, embs, ys, calibrate_prompts
else:
choice = 0
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
# TODO skip allowing rating
if text == None:
print('NSFW -- choice is disliked')
choice = 0
ys += [choice]*1
text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts)
return text, embs, ys, calibrate_prompts
css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
0% {
background: var(--bg-color);
}
100% {
background: var(--button-secondary-background-fill);
}
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
if (event.key === 'a' || event.key === 'A') {
// Trigger click on 'dislike' if 'A' is pressed
document.getElementById('dislike').click();
} else if (event.key === ' ' || event.keyCode === 32) {
// Trigger click on 'neither' if Spacebar is pressed
document.getElementById('neither').click();
} else if (event.key === 'l' || event.key === 'L') {
// Trigger click on 'like' if 'L' is pressed
document.getElementById('like').click();
}
});
function fadeInOut(button, color) {
button.style.setProperty('--bg-color', color);
button.classList.remove('fade-in-out');
void button.offsetWidth; // This line forces a repaint by accessing a DOM property
button.classList.add('fade-in-out');
button.addEventListener('animationend', () => {
button.classList.remove('fade-in-out'); // Reset the animation state
}, {once: true});
}
document.body.addEventListener('click', function(event) {
const target = event.target;
if (target.id === 'dislike') {
fadeInOut(target, '#ff1717');
} else if (target.id === 'like') {
fadeInOut(target, '#006500');
} else if (target.id === 'neither') {
fadeInOut(target, '#cccccc');
}
});
</script>
'''
with gr.Blocks(css=css, head=js_head) as demo:
gr.Markdown('''# Compass
### Generative Recommenders for Exporation of Text
Explore the latent space without prompting based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
''', elem_id="description")
embs = gr.State([])
ys = gr.State([])
calibrate_prompts = gr.State([
'the moon is melting into my glass of tea',
'a sea slug -- pair of claws scuttling -- jelly fish glowing',
'an adorable creature. It may be a goblin or a pig or a slug.',
'an animation about a gorgeous nebula',
'a sketch of an impressive mountain by da vinci',
'a watercolor painting: the octopus writhes',
])
def l():
return None
with gr.Row(elem_id='output-image'):
text = gr.Textbox(interactive=False, elem_id="text")
with gr.Row(equal_height=True):
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
b1.click(
choose,
[text, b1, embs, ys, calibrate_prompts],
[text, embs, ys, calibrate_prompts]
)
b2.click(
choose,
[text, b2, embs, ys, calibrate_prompts],
[text, embs, ys, calibrate_prompts]
)
b3.click(
choose,
[text, b3, embs, ys, calibrate_prompts],
[text, embs, ys, calibrate_prompts]
)
with gr.Row():
b4 = gr.Button(value='Start')
b4.click(start,
[b4, embs, ys, calibrate_prompts],
[b1, b2, b3, b4, text, embs, ys, calibrate_prompts])
with gr.Row():
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the model is unlikely to produce NSFW text, this may still occur, and users should avoid NSFW content when rating.
</ div>
<br><br>
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
</ div>''')
demo.launch(share=True)
|