File size: 12,269 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# -*- coding: utf-8 -*-
"""message_bottle.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1I47sLakpuwERGzn-XoNct67mwiDS1mQD
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
torch.set_float32_matmul_precision('high')

from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM

class BottleneckT5Autoencoder:
    def __init__(self, model_path: str, device='cuda'):
        self.device = device
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512, torch_dtype=torch.bfloat16)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(self.device)
        self.model.eval()
        # self.model = torch.compile(self.model)


    def embed(self, text: str) -> torch.FloatTensor:
        inputs = self.tokenizer(text, return_tensors='pt', padding=True).to(self.device)
        decoder_inputs = self.tokenizer('', return_tensors='pt').to(self.device)
        return self.model(
            **inputs,
            decoder_input_ids=decoder_inputs['input_ids'],
            encode_only=True,
        )

    def generate_from_latent(self, latent: torch.FloatTensor, max_length=512, temperature=1., top_p=.8, length_penalty=10, min_new_tokens=30) -> str:
        dummy_text = '.'
        dummy = self.embed(dummy_text)
        perturb_vector = latent - dummy
        self.model.perturb_vector = perturb_vector
        input_ids = self.tokenizer(dummy_text, return_tensors='pt').to(self.device).input_ids
        output = self.model.generate(
            input_ids=input_ids,
            max_length=max_length,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            num_return_sequences=1,
            length_penalty=length_penalty,
            min_new_tokens=min_new_tokens,
            # num_beams=8,
        )
        return self.tokenizer.decode(output[0], skip_special_tokens=True)

autoencoder = BottleneckT5Autoencoder(model_path='thesephist/contra-bottleneck-t5-xl-wikipedia')


import gradio as gr
import numpy as np
from sklearn.svm import SVC
from sklearn.inspection import permutation_importance
from sklearn import preprocessing
import pandas as pd
import random
import time


dtype = torch.bfloat16
torch.set_grad_enabled(False)

prompt_list = [p for p in list(set(
                pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str]

start_time = time.time()

####################### Setup Model

# TODO put back
# @spaces.GPU()
def generate(prompt, in_embs=None,):
  if prompt != '':
    print(prompt)
    in_embs = in_embs / in_embs.abs().max() * .15 if in_embs != None else None
    in_embs = .9 * in_embs.to('cuda') + .5 * autoencoder.embed(prompt).to('cuda') if in_embs != None else autoencoder.embed(prompt).to('cuda')
  else:
    print('From embeds.')
  in_embs = in_embs / in_embs.abs().max() * .15
  text = autoencoder.generate_from_latent(in_embs.to('cuda'), temperature=.3, top_p=.99, min_new_tokens=5)
  in_embs = autoencoder.embed(prompt)
  return text, in_embs.to('cpu')


#######################

# TODO add to state instead of shared across all
glob_idx = 0

def next_one(embs, ys, calibrate_prompts):
    global glob_idx
    glob_idx = glob_idx + 1

    with torch.no_grad():
        if len(calibrate_prompts) > 0:
            print('######### Calibrating with sample prompts #########')
            prompt = calibrate_prompts.pop(0)
            print(prompt)
            text, img_embs = generate(prompt)
            embs += img_embs
            print(len(embs))
            return text, embs, ys, calibrate_prompts
        else:
            print('######### Roaming #########')


            # handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
            if len(list(set(ys))) <= 1:
                embs.append(.01*torch.randn(2048))
                embs.append(.01*torch.randn(2048))
                ys.append(0)
                ys.append(1)
            if len(list(ys)) < 10:
                embs += [.01*torch.randn(2048)] * 3
                ys += [0] * 3

            pos_indices = [i for i in range(len(embs)) if ys[i] == 1]
            neg_indices = [i for i in range(len(embs)) if ys[i] == 0]

            # the embs & ys stay tied by index but we shuffle to drop randomly
            random.shuffle(pos_indices)
            random.shuffle(neg_indices)

            #if len(pos_indices) - len(neg_indices) > 48 and len(pos_indices) > 80:
            #    pos_indices = pos_indices[32:]
            if len(neg_indices) - len(pos_indices) > 48/16 and len(pos_indices) > 6:
                pos_indices = pos_indices[5:]
            if len(neg_indices) - len(pos_indices) > 48/16 and len(neg_indices) > 6:
                neg_indices = neg_indices[5:]


            if len(neg_indices) > 25:
                neg_indices = neg_indices[1:]

            print(len(pos_indices), len(neg_indices))
            indices = pos_indices + neg_indices

            embs = [embs[i] for i in indices]
            ys = [ys[i] for i in indices]


            indices = list(range(len(embs)))

            # also add the latest 0 and the latest 1
            has_0 = False
            has_1 = False
            for i in reversed(range(len(ys))):
                if ys[i] == 0 and has_0 == False:
                    indices.append(i)
                    has_0 = True
                elif ys[i] == 1 and has_1 == False:
                    indices.append(i)
                    has_1 = True
                if has_0 and has_1:
                    break

            # we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
            # this ends up adding a rating but losing an embedding, it seems.
            # let's take off a rating if so to continue without indexing errors.
            if len(ys) > len(embs):
                print('ys are longer than embs; popping latest rating')
                ys.pop(-1)

            feature_embs = np.array(torch.stack([embs[i].to('cpu') for i in indices]).to('cpu'))
            scaler = preprocessing.StandardScaler().fit(feature_embs)
            feature_embs = scaler.transform(feature_embs)
            chosen_y = np.array([ys[i] for i in indices])

            print('Gathering coefficients')
            lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=.1).fit(feature_embs, chosen_y)
            coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
            coef_ = coef_ / coef_.abs().max() * 3
            print(coef_.shape, 'COEF')
            print('Gathered')

            rng_prompt = random.choice(prompt_list)
            w = 1# if len(embs) % 2 == 0 else 0
            im_emb = w * coef_.to(dtype=dtype)

            prompt= '' if glob_idx % 3 != 0 else rng_prompt
            text, im_emb = generate(prompt, im_emb)
            embs += im_emb


            return text, embs, ys, calibrate_prompts









def start(_, embs, ys, calibrate_prompts):
    text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts)
    return [
            gr.Button(value='Like (L)', interactive=True),
            gr.Button(value='Neither (Space)', interactive=True),
            gr.Button(value='Dislike (A)', interactive=True),
            gr.Button(value='Start', interactive=False),
            text,
            embs,
            ys,
            calibrate_prompts
            ]


def choose(text, choice, embs, ys, calibrate_prompts):
    if choice == 'Like (L)':
        choice = 1
    elif choice == 'Neither (Space)':
        embs = embs[:-1]
        text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts)
        return text, embs, ys, calibrate_prompts
    else:
        choice = 0

    # if we detected NSFW, leave that area of latent space regardless of how they rated chosen.
    # TODO skip allowing rating
    if text == None:
        print('NSFW -- choice is disliked')
        choice = 0

    ys += [choice]*1
    text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts)
    return text, embs, ys, calibrate_prompts

css = '''.gradio-container{max-width: 700px !important}
#description{text-align: center}
#description h1, #description h3{display: block}
#description p{margin-top: 0}
.fade-in-out {animation: fadeInOut 3s forwards}
@keyframes fadeInOut {
    0% {
      background: var(--bg-color);
    }
    100% {
      background: var(--button-secondary-background-fill);
    }
}
'''
js_head = '''
<script>
document.addEventListener('keydown', function(event) {
    if (event.key === 'a' || event.key === 'A') {
        // Trigger click on 'dislike' if 'A' is pressed
        document.getElementById('dislike').click();
    } else if (event.key === ' ' || event.keyCode === 32) {
        // Trigger click on 'neither' if Spacebar is pressed
        document.getElementById('neither').click();
    } else if (event.key === 'l' || event.key === 'L') {
        // Trigger click on 'like' if 'L' is pressed
        document.getElementById('like').click();
    }
});
function fadeInOut(button, color) {
  button.style.setProperty('--bg-color', color);
  button.classList.remove('fade-in-out');
  void button.offsetWidth; // This line forces a repaint by accessing a DOM property

  button.classList.add('fade-in-out');
  button.addEventListener('animationend', () => {
    button.classList.remove('fade-in-out'); // Reset the animation state
  }, {once: true});
}
document.body.addEventListener('click', function(event) {
    const target = event.target;
    if (target.id === 'dislike') {
      fadeInOut(target, '#ff1717');
    } else if (target.id === 'like') {
      fadeInOut(target, '#006500');
    } else if (target.id === 'neither') {
      fadeInOut(target, '#cccccc');
    }
});

</script>
'''

with gr.Blocks(css=css, head=js_head) as demo:
    gr.Markdown('''# Compass
### Generative Recommenders for Exporation of Text

Explore the latent space without prompting based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/).
    ''', elem_id="description")
    embs = gr.State([])
    ys = gr.State([])
    calibrate_prompts = gr.State([
    'the moon is melting into my glass of tea',
    'a sea slug -- pair of claws scuttling -- jelly fish glowing',
    'an adorable creature. It may be a goblin or a pig or a slug.',
    'an animation about a gorgeous nebula',
    'a sketch of an impressive mountain by da vinci',
    'a watercolor painting: the octopus writhes',
    ])
    def l():
        return None

    with gr.Row(elem_id='output-image'):
        text = gr.Textbox(interactive=False, elem_id="text")
    with gr.Row(equal_height=True):
        b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike")
        b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither")
        b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like")
        b1.click(
        choose,
        [text, b1, embs, ys, calibrate_prompts],
        [text, embs, ys, calibrate_prompts]
        )
        b2.click(
        choose,
        [text, b2, embs, ys, calibrate_prompts],
        [text, embs, ys, calibrate_prompts]
        )
        b3.click(
        choose,
        [text, b3, embs, ys, calibrate_prompts],
        [text, embs, ys, calibrate_prompts]
        )
    with gr.Row():
        b4 = gr.Button(value='Start')
        b4.click(start,
                 [b4, embs, ys, calibrate_prompts],
                 [b1, b2, b3, b4, text, embs, ys, calibrate_prompts])
    with gr.Row():
        html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br>
<div style='text-align:center; font-size:14px'>Note that while the model is unlikely to produce NSFW text, this may still occur, and users should avoid NSFW content when rating.
</ div>
<br><br>
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback.
</ div>''')

demo.launch(share=True)