File size: 50,358 Bytes
ee8e6f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""Loss functions."""
import torch
import torch.nn as nn
import torchvision
import torch.nn.functional as F
from utils.metrics import bbox_iou
from utils.torch_utils import de_parallel
from torch.nn.functional import cosine_similarity
import numpy as np
from utils.general import (
LOGGER,
TQDM_BAR_FORMAT,
Profile,
xywh2xyxy,
xyxy2xywh,
non_max_suppression_ps,
scale_boxes,
get_fixed_xyxy,
)
def smooth_BCE(eps=0.1):
"""Returns label smoothing BCE targets for reducing overfitting; pos: `1.0 - 0.5*eps`, neg: `0.5*eps`. For details see https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441"""
return 1.0 - 0.5 * eps, 0.5 * eps
class BCEBlurWithLogitsLoss(nn.Module):
# BCEwithLogitLoss() with reduced missing label effects.
def __init__(self, alpha=0.05):
"""Initializes a modified BCEWithLogitsLoss with reduced missing label effects, taking optional alpha smoothing
parameter.
"""
super().__init__()
self.loss_fcn = nn.BCEWithLogitsLoss(reduction="none") # must be nn.BCEWithLogitsLoss()
self.alpha = alpha
def forward(self, pred, true):
"""Computes modified BCE loss for YOLOv5 with reduced missing label effects, taking pred and true tensors,
returns mean loss.
"""
loss = self.loss_fcn(pred, true)
pred = torch.sigmoid(pred) # prob from logits
dx = pred - true # reduce only missing label effects
# dx = (pred - true).abs() # reduce missing label and false label effects
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
loss *= alpha_factor
return loss.mean()
class FocalLoss(nn.Module):
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
"""Initializes FocalLoss with specified loss function, gamma, and alpha values; modifies loss reduction to
'none'.
"""
super().__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = "none" # required to apply FL to each element
def forward(self, pred, true,mask, object_loss,patch):
"""Calculates the focal loss between predicted and true labels using a modified BCEWithLogitsLoss."""
loss = self.loss_fcn(pred, true)
if object_loss:
loss= loss*mask
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = torch.sigmoid(pred) # prob from logits
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = (1.0 - p_t) ** self.gamma
loss *= alpha_factor * modulating_factor
if object_loss:
if patch:
if self.reduction == "mean":
# return loss.mean()
return loss.sum()/(mask > 0).sum().item()
elif self.reduction == "sum":
return loss.sum()
else:
if self.reduction == "mean":
return loss.mean()
elif self.reduction == "sum":
return loss.sum()
else:
if self.reduction == "mean":
return loss.mean()
elif self.reduction == "sum":
return loss.sum()
return loss
class QFocalLoss(nn.Module):
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
"""Initializes Quality Focal Loss with given loss function, gamma, alpha; modifies reduction to 'none'."""
super().__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = "none" # required to apply FL to each element
def forward(self, pred, true):
"""Computes the focal loss between `pred` and `true` using BCEWithLogitsLoss, adjusting for imbalance with
`gamma` and `alpha`.
"""
loss = self.loss_fcn(pred, true)
pred_prob = torch.sigmoid(pred) # prob from logits
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
loss *= alpha_factor * modulating_factor
if self.reduction == "mean":
return loss.mean()
elif self.reduction == "sum":
return loss.sum()
else: # 'none'
return loss
class ComputeLoss:
sort_obj_iou = False
# Compute losses
def __init__(self, model, autobalance=False):
"""Initializes ComputeLoss with model and autobalance option, autobalances losses if True."""
device = next(model.parameters()).device # get model device
h = model.hyp # hyperparameters
# Define criteria
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device))
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["obj_pw"]], device=device))
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
# Focal loss
g = h["fl_gamma"] # focal loss gamma
if g > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
m = de_parallel(model).model[-1] # Detect() module
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
self.na = m.na # number of anchors
self.nc = m.nc # number of classes
self.nl = m.nl # number of layers
self.anchors = m.anchors
self.stride = m.stride
self.device = device
self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid
self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]
def __call__(self, p, targets, feat,epoch): # predictions, targets
"""Performs forward pass, calculating class, box, and object loss for given predictions and targets."""
epsilon = 1e-12
p_lcls = torch.zeros(1, device=self.device) # class loss
p_lbox = torch.zeros(1, device=self.device) # box loss
p_lobj = torch.zeros(1, device=self.device)
f_lcls = torch.zeros(1, device=self.device) # class loss
f_lbox = torch.zeros(1, device=self.device) # box loss
f_lobj = torch.zeros(1, device=self.device)
# target= targets[:,:6]
# masked_values_patch = torch.zeros(p, dtype=p.dtype, device=self.device)
p_region= torch.cat((targets[:,0:1],targets[:,6:10]),dim=1)
p_n=[]
complete_patch_mask= []
for i in range(self.nl):
selected_ratio=[8,16,32]
# size_ratio=[(32,32),(16,16),(8,8)]
unique_boxes, _ = torch.unique(p_region, dim=0, return_inverse=True)
extracted_slices= []
patch_mask=[]
for l in range(p[i].shape[0]):
_, x1, y1, x2, y2 = unique_boxes[l].int()
x1, x2, y1, y2 = int(x1 / selected_ratio[i]), int(x2 / selected_ratio[i]), int(y1 / selected_ratio[i]), int(y2 / selected_ratio[i])
# Create a mask of zeros
mask = torch.zeros_like(p[i][l])
# Set the specified region to 1
mask[:, y1:y2, x1:x2, :] = 1
# Apply the mask to p[i][l]
masked_p = p[i][l] * mask
# import cv2
# import numpy as np
# roi_aligned_features= masked_p[:,:,:,-1].detach().cpu().numpy()
# roi_aligned_features_numpy = roi_aligned_features
# roi_aligned_features_numpy[roi_aligned_features_numpy < 0] *= -1
# roi_aligned_features_numpy = np.transpose(roi_aligned_features_numpy, (1, 2, 0))
# # Write the NumPy array to an image file using OpenCV
# processed_array = ((roi_aligned_features_numpy) * 255).astype(np.uint8)
# #processed_array = np.squeeze(processed_array)
# # Write the processed image using OpenCV
# save_path = f"{l}_output.jpg"
# cv2.imwrite(save_path, processed_array)
# Extract the masked slice
# extracted_slice = masked_p[:, y1:y2, x1:x2, :]
extracted_slices.append(masked_p.squeeze(0))
patch_mask.append(mask.squeeze(0))
p_n.append(torch.stack(extracted_slices, dim=0))
complete_patch_mask.append(torch.stack(patch_mask, dim=0))
p_tcls, p_tbox, p_indices, p_anchors = self.build_targets(p_n, targets)
p_lbox , p_lobj ,p_lcls, p_bs, t_class_all,p_classes_path= self. loss_com_patch(p_tcls, p_tbox, p_indices, p_anchors,p_n,complete_patch_mask)
pseudo_targets, patch_targets,orignal_targets,pseudo_targets_60_90 = self.pseudo_targets(p, targets)
mean_sim=0
# # similarity_loss_patch_2= self.similarity(feat,pseudo_targets_60_90, patch_targets,orignal_targets,0 )
# # if similarity_loss_patch_2 != torch.zeros(1, device=self.device):
# # similarity_loss_patch_2= similarity_loss_patch_2.unsqueeze(0)
# # mean_sim+=1
if epoch < 20 :
similarity_loss_patch_3= self.similarity(feat,pseudo_targets_60_90, patch_targets,orignal_targets,1 )
if similarity_loss_patch_3 != torch.zeros(1, device=self.device):
similarity_loss_patch_3= similarity_loss_patch_3.unsqueeze(0)
mean_sim+=1
if mean_sim > 0:
similarity_loss_patch= (similarity_loss_patch_3)#+(similarity_loss_patch_3)/mean_sim
else:
similarity_loss_patch= (similarity_loss_patch_3)#+(similarity_loss_patch_3)
if epoch >= 20:
similarity_loss_patch = torch.zeros(1, device=self.device) # class loss
# # similarity_loss_patch_4= self.similarity(feat,pseudo_targets_60_90, patch_targets,orignal_targets,2 )
# # if similarity_loss_patch_4 != torch.zeros(1, device=self.device):
# # similarity_loss_patch_4= similarity_loss_patch_4.unsqueeze(0)
# # mean_sim+=1
if len(pseudo_targets) > 0:
f_tcls, f_tbox, f_indices, f_anchors = self.build_targets(p, pseudo_targets)
f_lbox , f_lobj ,f_lcls, p_classes= self. loss_com_background(f_tcls, f_tbox, f_indices, f_anchors,p)
# i_tcls, i_tbox, i_indices, i_anchors = self.build_targets(p, targets)
# # i_class_all= self.loss_com_image(i_tcls, i_tbox, i_indices, i_anchors,p)
# # kl_loss= ((self.compute_kl_loss(t_class_all,p_classes_path))*0.2) + epsilon
#sim_loss
if len(pseudo_targets) > 0:
lbox= p_lbox + (f_lbox*0.1)
lobj= p_lobj +(f_lobj*0.1)
lcls= (p_lcls)+(f_lcls*0.1)+(similarity_loss_patch*0.1) #+ (kl_loss)
# lcls= similarity_loss_patch
else:
lbox= p_lbox
lobj= p_lobj
lcls= p_lcls+(similarity_loss_patch*0.1)#+kl_loss
if epoch == 29:
lbox= p_lbox
lobj= p_lobj
lcls= p_lcls
# if similarity_loss_patch != torch.zeros(1, device=self.device):
# similarity_loss_patch= similarity_loss_patch.unsqueeze(0)
# return (kl_loss) * p_bs, torch.cat((kl_loss.unsqueeze(0),p_lobj, p_lcls)).detach()
return (lbox + lobj + lcls) * p_bs, torch.cat((p_lbox, p_lobj, p_lcls)).detach()
# return (lbox + lobj + lcls) * p_bs, torch.cat((p_lbox, p_lobj, p_lcls,f_lbox, f_lobj, f_lcls, similarity_loss_patch)).detach()
def loss_com_patch (self,tcls, tbox, indices, anchors,p_n,complete_patch_masks):
lcls = torch.zeros(1, device=self.device) # class loss
lbox = torch.zeros(1, device=self.device) # box loss
lobj = torch.zeros(1, device=self.device) # object loss84653940
# targets
t_classes_path=[]
p_classes_path=[]
# Losses
for i, (pi, pq) in enumerate(zip(p_n, complete_patch_masks)): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
n = b.shape[0] # number of targets
if n:
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
# Regression
pxy = pxy.sigmoid() * 2 - 0.5
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
iou = iou.detach().clamp(0).type(tobj.dtype)
if self.sort_obj_iou:
j = iou.argsort()
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
if self.gr < 1:
iou = (1.0 - self.gr) + self.gr * iou
tobj[b, a, gj, gi] = iou # iou ratio
# Classification
if self.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(pcls, self.cn, device=self.device) # targets
t[range(n), tcls[i]] = self.cp
lcls += self.BCEcls(pcls, t,pcls,object_loss=False, patch= False) # BCE
# t_classes_path.append(t)
# p_classes_path.append(pcls)
# Append targets to text file
# with open('targets.txt', 'a') as file:
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
obji = self.BCEobj(pi[..., 4], tobj,pq[..., 4],object_loss=True,patch= True)
lobj += obji * self.balance[i] # obj loss
if self.autobalance:
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
if self.autobalance:
self.balance = [x / self.balance[self.ssi] for x in self.balance]
lbox *= self.hyp["box"]
lobj *= self.hyp["obj"]
lcls *= self.hyp["cls"]
bs = tobj.shape[0] # batch size
# sim_loss= torch.tensor(0.00, dtype=torch.float16, device='cuda:0')
# kl_loss= torch.tensor(0.00, dtype=torch.float16, device='cuda:0')
# torch.tensor(0.001, dtype=torch.float16, device='cuda:0')
# t_classes_path= torch.cat(t_classes_path)
# p_classes_path=torch.cat(p_classes_path)
return lbox , lobj ,lcls, bs ,t_classes_path,p_classes_path
def loss_com_background (self,tcls, tbox, indices, anchors,p):
lcls = torch.zeros(1, device=self.device) # class loss
lbox = torch.zeros(1, device=self.device) # box loss
lobj = torch.zeros(1, device=self.device) # object loss
p_classes_all=[]
# targets
# gt_path= paths[0].split("/")[-1].split(".")[0]
# gt_part=gt_path.split("_")
# gt_part[3]="1000"
# del gt_part[2]
# gt_path= '_'.join(gt_part)
# x_prediction=np.load(f"100x_GT/{gt_path}.npy", allow_pickle=True)
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
n = b.shape[0] # number of targets
if n:
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
pxy, pwh,pobj, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
# Regression
pxy = pxy.sigmoid() * 2 - 0.5
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
iou = iou.detach().clamp(0).type(tobj.dtype)
if self.sort_obj_iou:
j = iou.argsort()
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
if self.gr < 1:
iou = (1.0 - self.gr) + self.gr * iou
tobj[b, a, gj, gi] = iou # iou ratio
# Classification
if self.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(pcls, self.cn, device=self.device) # targets
t[range(n), tcls[i]] = self.cp
lcls += self.BCEcls(pcls, t ,pcls,object_loss=False,patch= False) # BCE
p_classes_all.append(pcls)
# Append targets to text file
# with open('targets.txt', 'a') as file:
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
# tobj[b, a, gj, gi] = iou # iou ratio
mask = torch.zeros_like(pi[..., 4], dtype=torch.bool)
mask[b, a, gj, gi] = True
# Apply the mask to pi[..., 4]
masked_values = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)
masked_values[mask] = pi[..., 4][mask]
# masked_values[mask] = pi[..., 4][mask]
obji = self.BCEobj(masked_values, tobj,mask,object_loss=True,patch= False)
# obji*=
lobj += obji * self.balance[i] # obj loss
if self.autobalance:
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
if self.autobalance:
self.balance = [x / self.balance[self.ssi] for x in self.balance]
# lbox *= self.hyp["box"]
# lobj *= self.hyp["obj"]
# lcls *= self.hyp["cls"]
bs = tobj.shape[0] # batch size
# sim_loss= torch.tensor(0.00, dtype=torch.float16, device='cuda:0')
# kl_loss= torch.tensor(0.00, dtype=torch.float16, device='cuda:0')
# torch.tensor(0.001, dtype=torch.float16, device='cuda:0')
p_classes_all= torch.cat(p_classes_all, dim=0)
return lbox , lobj ,lcls, p_classes_all
def loss_com_image (self,tcls, tbox, indices, anchors,p):
image_classes_all=[]
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
# tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
n = b.shape[0] # number of targets
if n:
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
pxy, pwh,pobj, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
image_classes_all.append(pcls)
image_classes_all= torch.cat(image_classes_all)
return image_classes_all
def build_targets(self, p, target):
"""Prepares model targets from input targets (image,class,x,y,w,h) for loss computation, returning class, box,
indices, and anchors.
"""
targets= target[:,:6]
na, nt = self.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch = [], [], [], []
gain = torch.ones(7, device=self.device) # normalized to gridspace gain
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
g = 0.5 # bias
off = (
torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[-1, 0],
[0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
],
device=self.device,
).float()
* g
) # offsets
for i in range(self.nl):
anchors, shape = self.anchors[i], p[i].shape
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets* gain # shape(3,n,7)
if nt:
# Matches
r = t[..., 4:6] / anchors[:, None] # wh ratio
j = torch.max(r, 1 / r).max(2)[0] < self.hyp["anchor_t"] # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1 < g) & (gxy > 1)).T
l, m = ((gxi % 1 < g) & (gxi > 1)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]
offsets = 0
# Define
bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
gij = (gxy - offsets).long()
gi, gj = gij.T # grid indices
# Append
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
anch.append(anchors[a]) # anchors
tcls.append(c) # class
return tcls, tbox, indices, anch
def compute_kl_loss(self, tcls, pred):
# pcls_sigmoid = torch.sigmoid(pred)
tcls_sigmoid = tcls
data2 = self.gumbel_softmax(pred, tau=1, hard=False)
# Get the indices of the maximum values along each row
# max_indices = torch.argmax(pcls_sigmoid, dim=1)
# Create a new tensor using these indices
# new_tensor2 = max_indices.device
# new_tensor2= new_tensor2.to(dtype=torch.float)
# new_tensor2.requires_grad_(True)
# Combine tensor values into a single list for both sets
# data1 = []
data1 = [torch.tensor(lst) for lst in tcls]
# Stack tensors along a new dimension (dimension 0 by default)
stacked_data1= torch.stack(data1)
# Perform element-wise sum along dimension 0
data1_counts = torch.sum(stacked_data1, dim=0).detach()
# data1= []
# data2 = pcls_softmax #new_tensor2.cpu().tolist()
# for tensor in tcls_sigmoid:
# data1.extend(tensor.cpu().tolist())
# # for tensord in pcls_sigmoid:
# # data2.extend(tensord.cpu().tolist())
# # Convert to probability distributions
# data1_counts = np.bincount(data1, minlength=14)
# data1_counts = torch.sum(data1, dim=0)
data2_counts = torch.sum(data2, dim=0)
# data2_counts = np.bincount(data2, minlength=14)
epsilon = 1e-12
# Normalize to get probabilities
data1_probs = (data1_counts+epsilon) / sum(data1_counts)
data2_probs = (data2_counts+epsilon) / sum(data2_counts)
# Convert to tensors
data1_probs = torch.tensor(data1_probs, device='cuda:0', dtype=torch.float, requires_grad=True)
# data2_probs = torch.tensor(data2_probs, device='cuda:0', dtype=torch.float, requires_grad=True)
# Compute KL divergence
kl_div = F.kl_div(data1_probs.log(), data2_probs, reduction='batchmean')
return kl_div
def gumbel_softmax(self,logits, tau=1, hard=False, eps=1e-10):
gumbels = -torch.empty_like(logits).exponential_().log() # ~Gumbel(0,1)
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = gumbels.softmax(dim=-1)
if hard:
# Straight through
index = y_soft.max(dim=-1, keepdim=True)[1]
y_hard = torch.zeros_like(logits).scatter_(-1, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
else:
# Reparameterization trick
ret = y_soft
return ret
def make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
t = self.anchors[i].dtype
shape = 1, self.na, ny, nx, 2 # grid shape
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
yv, xv = torch.meshgrid(y, x, indexing='ij') #if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
return grid, anchor_grid
def calculate_overlap(self,box1, box2):
"""Calculate the overlap area between two bounding boxes."""
# Extracting coordinates of the intersection rectangl+e
box1=box1*640
box2=box2*640
x_left = torch.max(box1[0] - box1[2] / 2, box2[0] - box2[2] / 2)
y_top = torch.max(box1[1] - box1[3] / 2, box2[1] - box2[3] / 2)
x_right = torch.min(box1[0] + box1[2] / 2, box2[0] + box2[2] / 2)
y_bottom = torch.min(box1[1] + box1[3] / 2, box2[1] + box2[3] / 2)
# Calculate width and height of the intersection rectangle
width = torch.clamp(x_right - x_left, min=0)
height = torch.clamp(y_bottom - y_top, min=0)
# If the intersection is valid (non-negative area), return the area
intersection_area = width * height
return intersection_area
def merge_tensors(self,tensor1, tensor_9):
"""Merge two tensors while keeping all values from tensor1 and discarding overlapped values from tensor2."""
without_patch_tensor = []
patch_tensor= []
tensor2= tensor_9[:,:6]
# Add all bounding boxes from tensor1
# merged_tensor.extend(tensor1)
# Iterate through each bounding box in tensor2
for box2 in tensor2:
overlap = False
# Check for overlap with each bounding box in tensor1
for box1 in tensor1:
if box1[0] == box2[0]:
if self.calculate_overlap(box1[2:], box2[2:]) > 100:
overlap = True
break
# If there's no overlap, add the bounding box from tensor2
if overlap:
patch_tensor.append(box2)
if not overlap:
without_patch_tensor.append(box2)
if without_patch_tensor:
without_patch_tensor = torch.stack(without_patch_tensor)
without_patch_tensor = without_patch_tensor[without_patch_tensor[:, 0].argsort()]
# else:
# merged_tensor= torch.tensor(merged_tensor).device
return without_patch_tensor,patch_tensor
def pseudo_targets(self, p, target):
"""Prepares model targets from input targets (image,class,x,y,w,h) for loss computation, returning class, box,
indices, and anchors.
"""
# targets= target[:,:6]
# p_region= torch.cat((target[:,0:1],target[:,6:10]),dim=1)
# p_n=[]
# for i in range(self.nl):
# selected_ratio=[8,16,32]
# size_ratio=[(32,32),(16,16),(8,8)]
# unique_boxes, _ = torch.unique(p_region, dim=0, return_inverse=True)
# extracted_slices= []
# for l in range(p[i].shape[0]):
# _, x1, y1, x2, y2 = unique_boxes[l].int()
# x1, x2, y1, y2 = int(x1 / selected_ratio[i]), int(x2 / selected_ratio[i]), int(y1 / selected_ratio[i]), int(y2 / selected_ratio[i])
# # Create a mask of zeros
# mask = torch.ones_like(p[i][l])
# # Set the specified region to 1
# mask[:, y1:y2, x1:x2, :] = 0
# # Apply the mask to p[i][l]
# masked_p = p[i][l] * mask
# # Extract the masked slice
# # extracted_slice = masked_p[:, y1:y2, x1:x2, :]
# extracted_slices.append(masked_p.squeeze(0))
# p_n.append(torch.stack(extracted_slices, dim=0))
z=[]
p_clone= p.copy()
for i in range(self.nl):
bs, self.na, ny, nx, self.no = p_clone[i].shape
xy, wh, conf = p_clone[i].sigmoid().split((2, 2, self.nc + 1), 4)
self.grid[i], self.anchor_grid[i] = self.make_grid(nx, ny, i)
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, conf), 4)
z.append(y.view(bs, self.na * nx * ny, self.no))
z_new= torch.cat(z, 1)
lb = [targets_lb[targets_lb[:, 0] == i, 1:] for i in range(range(p_clone[0].shape[0]))] if False else []
train_preds = non_max_suppression_ps(
z_new.detach().cpu(), 0.5, 0.2, labels=lb, multi_label=False, agnostic=True, max_det=300
)
# del sgrid
# del anchor_grid
train_pseudo_labels = [torch.tensor([]) for _ in range(len(train_preds))]
train_pseudo_labels_60_90 = [torch.tensor([]) for _ in range(len(train_preds))]
for num, preds in enumerate(train_preds):
for bbox in preds:
# print((bbox[2] - bbox[0]) * (bbox[3] - bbox[1]))
if ((bbox[2] - bbox[0]) * (bbox[3] - bbox[1])) > 10:
# print(bbox[4])
if bbox[4] > 0.95:
last_14_values = bbox[-14:].softmax(dim=0)
# Normalize the values to make them probabilities
probs = last_14_values / last_14_values.sum()
# Create a categorical distribution
dist = torch.distributions.Categorical(probs)
# Calculate entropy
entropy = dist.entropy()
# print(entropy)
if entropy.item() < 2.7:
bbox_tensor = torch.tensor(bbox).unsqueeze(0) # Convert bbox to tensor and add a batch dimension
train_pseudo_labels[num] = torch.cat((train_pseudo_labels[num], bbox_tensor), dim=0)
# else:
elif 0.60 < bbox[4] <= 0.95:
bbox_tensor = torch.tensor(bbox).unsqueeze(0)
train_pseudo_labels_60_90[num] = torch.cat((train_pseudo_labels_60_90[num], bbox_tensor), dim=0)
# print(entropy)
train_pseudo_box = [([]) for _ in range(len(train_pseudo_labels)) ]
train_pseudo_box_60_90 = [[] for _ in range(len(train_pseudo_labels_60_90))]
for num2, pred_box in enumerate(train_pseudo_labels):
for bbox in pred_box:
# train_pseudo_box[num2].append(bbox[:4].detach().cpu().numpy())
train_pseudo_box[num2].append(bbox.detach().cpu().numpy())
for num2, pred_box in enumerate(train_pseudo_labels_60_90):
for bbox in pred_box:
train_pseudo_box_60_90[num2].append(bbox.detach().cpu().numpy())
pesudo_target_list = []
pesudo_target_list_60_90 = []
for i, tensor in enumerate(train_pseudo_labels):
for t in tensor:
tensor_values = [
i,
t[5].item(), # [6]
torch.tensor(int(t[0].item())), # [0]
torch.tensor(int(t[1].item())), # [1]
torch.tensor(int(t[2].item())), # [2]
torch.tensor(int(t[3].item())) # [3]
]
pesudo_target_list.append(tensor_values)
for i, tensor in enumerate(train_pseudo_labels_60_90):
for t in tensor:
tensor_values = [
i,
t[5].item(),
torch.tensor(int(t[0].item())),
torch.tensor(int(t[1].item())),
torch.tensor(int(t[2].item())),
torch.tensor(int(t[3].item()))
]
pesudo_target_list_60_90.append(tensor_values)
# Convert the inner lists to tensors
pesudo_target_list = [torch.tensor(tensor_values) for tensor_values in pesudo_target_list]
pesudo_target_list_60_90 = [torch.tensor(tensor_values) for tensor_values in pesudo_target_list_60_90]
targets_ps= target[:,:6]
# optimizer_cell_model.zero_grad(
# Stack the tensors along a new dimension (dimension 0 in this example)
wp_target=[]
p_target=[]
wp_target_60_90=[]
if pesudo_target_list:
pesudo_target_list_concatenated = torch.stack(pesudo_target_list, dim=0)
pesudo_target_list_concatenated= pesudo_target_list_concatenated/torch.tensor([1,1,640,640,640,640])
x_min, y_min, x_max, y_max = pesudo_target_list_concatenated[:, 2], pesudo_target_list_concatenated[:, 3], pesudo_target_list_concatenated[:, 4], pesudo_target_list_concatenated[:, 5]
# Calculating x_center, y_center, width, height
x_center = (x_min + x_max) / 2
y_center = (y_min + y_max) / 2
width = x_max - x_min
height = y_max - y_min
# Updating the tensor with new values
pesudo_target_list_concatenated[:, 2] = x_center
pesudo_target_list_concatenated[:, 3] = y_center
pesudo_target_list_concatenated[:, 4] = width
pesudo_target_list_concatenated[:, 5] = height
pesudo_target_list_concatenated = pesudo_target_list_concatenated.to(target.device)
wp_target,p_target = self.merge_tensors(targets_ps,pesudo_target_list_concatenated)
if pesudo_target_list_60_90:
pesudo_target_list_concatenated_60_90 = torch.stack(pesudo_target_list_60_90, dim=0)
pesudo_target_list_concatenated_60_90 = pesudo_target_list_concatenated_60_90 / torch.tensor([1, 1, 640, 640, 640, 640])
x_min, y_min, x_max, y_max = pesudo_target_list_concatenated_60_90[:, 2], pesudo_target_list_concatenated_60_90[:, 3], pesudo_target_list_concatenated_60_90[:, 4], pesudo_target_list_concatenated_60_90[:, 5]
# Calculating x_center, y_center, width, height
x_center = (x_min + x_max) / 2
y_center = (y_min + y_max) / 2
width = x_max - x_min
height = y_max - y_min
# Updating the tensor with new values
pesudo_target_list_concatenated_60_90[:, 2] = x_center
pesudo_target_list_concatenated_60_90[:, 3] = y_center
pesudo_target_list_concatenated_60_90[:, 4] = width
pesudo_target_list_concatenated_60_90[:, 5] = height
pesudo_target_list_concatenated_60_90 = pesudo_target_list_concatenated_60_90.to(target.device)
wp_target_60_90,p_target_60_90 = self.merge_tensors(targets_ps,pesudo_target_list_concatenated_60_90)
# else:
return wp_target, p_target, targets_ps,wp_target_60_90
def calculate_iou(self,bbox1, bbox2):
"""
Calculate Intersection over Union (IoU) between two bounding boxes.
Arguments:
bbox1 (tuple): Coordinates of the first bounding box in the format (x1, y1, x2, y2).
bbox2 (tuple): Coordinates of the second bounding box in the format (x1, y1, x2, y2).
Returns:
float: Intersection over Union (IoU) between the two bounding boxes.
"""
# Extract coordinates of the bounding boxes
x1_1, y1_1, x2_1, y2_1 = bbox1
x1_2, y1_2, x2_2, y2_2 = bbox2
# Calculate the coordinates of the intersection rectangle
x_left = max(x1_1, x1_2)
y_top = max(y1_1, y1_2)
x_right = min(x2_1, x2_2)
y_bottom = min(y2_1, y2_2)
# If there's no intersection, return 0
if x_right < x_left or y_bottom < y_top:
return 0.0
# Calculate the area of intersection rectangle
intersection_area = (x_right - x_left) * (y_bottom - y_top)
# Calculate the area of both bounding boxes
bbox1_area = (x2_1 - x1_1) * (y2_1 - y1_1)
bbox2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
# Calculate the area of union
union_area = bbox1_area + bbox2_area - intersection_area
# Calculate IoU
iou = intersection_area / union_area
return iou
def xywh_to_xyxy(self,xywh):
x_center, y_center, width, height = xywh
x_min = x_center - width / 2
y_min = y_center - height / 2
x_max = x_center + width / 2
y_max = y_center + height / 2
return torch.tensor([x_min, y_min, x_max, y_max])
def compute_similarity(self,feature_maps):
num_samples = len(feature_maps)
similarity_matrix = torch.zeros((num_samples, num_samples))
# Apply average pooling to each feature map
pooled_feature_maps = [F.avg_pool2d(fm, fm.shape[2]) for fm in feature_maps]
for i in range(num_samples):
for j in range(num_samples):
# Calculate cosine similarity between pooled feature maps
similarity_matrix[i, j] = F.cosine_similarity(pooled_feature_maps[i].view(-1), pooled_feature_maps[j].view(-1), dim=0)
return similarity_matrix
def feat_box(self,pseudo_targets,int_feat, Num_targets,p_layer ):
pooled_feature_map_pseudo= []
is_bbox=[]
for i in range(Num_targets):
img_num = int(pseudo_targets[i,0].item())
p2_feature_map =int_feat[p_layer ][img_num]#pred[0][img_num][:,:,:,-1]# imgs[img_num]
x_center = pseudo_targets[i, 2]
y_center = pseudo_targets[i, 3]
width = pseudo_targets[i, 4]
height = pseudo_targets[i, 5]
bb = [round(x_center.item(),4), round(y_center.item(),4), round(width.item(),4), round(height.item(),4)]
p2_feature_shape_tensor = torch.tensor([p2_feature_map.shape[2], p2_feature_map.shape[1],p2_feature_map.shape[2],p2_feature_map.shape[1]]) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device)
p2_normalized_xyxy = self.xywh_to_xyxy(bb)*p2_feature_shape_tensor #imgs.shape[2]
p2_x_min, p2_y_min, p2_x_max, p2_y_max = get_fixed_xyxy(p2_normalized_xyxy,p2_feature_map)
batch_index = torch.tensor([0], dtype=torch.float32).to(self.device)
p2_roi = torch.tensor([p2_x_min, p2_y_min, p2_x_max, p2_y_max], device=self.device).float()
is_bbox.append(p2_roi)
# Concatenate the batch index to the bounding box coordinates
p2_roi_with_batch_index = torch.cat([batch_index, p2_roi])
# relevant_feature_map = p3_feature_map.unsqueeze(0)[:, :, y_min:y_max, x_min:x_max]
p2_resized_object = torchvision.ops.roi_align(p2_feature_map.unsqueeze(0), p2_roi_with_batch_index.unsqueeze(0).to(self.device), output_size=(4, 4))
pooled_feature_map_pseudo.append(p2_resized_object)
return pooled_feature_map_pseudo, is_bbox
def similarity(self,int_feat,pseudo_targets, patch_targets, orignal_targets,p_layer):
losses = []
Num_targets = len(pseudo_targets)
Num_targets_label = len(orignal_targets)
target_featuers, target_box= self.feat_box(orignal_targets,int_feat, Num_targets_label,p_layer)
# for feat2, label2, is_bb in zip(target_featuers, orignal_targets[:,1],target_box):
# similarity=0
# for feat1, label1 , ps_bb in zip( target_featuers, orignal_targets[:,1],target_box ):
# iou= self.calculate_iou(ps_bb,is_bb)
# if iou < 0.3:
# feat2 = F.avg_pool2d(feat2, feat2.shape[2])
# if label1 == label2:
# feat1 = F.avg_pool2d(feat1, feat1.shape[2])
# similarity = cosine_similarity(feat1,feat2).mean()
# # similarity=(similarity+1)/2
# losses.append(1-similarity)
# if label1 != label2:
# feat1 = F.avg_pool2d(feat1, feat1.shape[2])
# similarity = cosine_similarity(feat1,feat2).mean()
# similarity=(similarity+1)/2
# alpha= 0.2
# torch.max(torch.tensor(0.0), similarity )
# losses.append(similarity)
# # Calculate similarity between features (e.g., cosine similari
if Num_targets :
pseudo_featuers,pseudo_box= self.feat_box(pseudo_targets,int_feat, Num_targets,p_layer )
for feat2, label2, is_bb in zip(pseudo_featuers, pseudo_targets[:,1],pseudo_box):
#sim=-10
min_same_class_sim=100
max_diff_class_sim= 0
for feat1, label1 , ps_bb in zip( target_featuers, orignal_targets[:,1],target_box ):
iou= self.calculate_iou(ps_bb,is_bb)
feat2 = F.avg_pool2d(feat2, feat2.shape[2])
feat1 = F.avg_pool2d(feat1, feat1.shape[2])
if iou < 0.3:
# Calculate similarity between features (e.g., cosine similarity)
similarity = cosine_similarity(feat1,feat2).mean()
similarity=(similarity+1) # Normalize
if label1 == label2:
if min_same_class_sim > similarity:
min_same_class_sim = similarity
else:
if max_diff_class_sim < similarity:
max_diff_class_sim = similarity
# max_similarity=(max_similarity+1)/2
# Compare labels
if min_same_class_sim < 100 and max_diff_class_sim > 0:
loss_value = torch.max(torch.tensor(0.0), min_same_class_sim - (max_diff_class_sim+0.05))
losses.append(loss_value)
# Compute loss (e.g., squared difference)
# loss_sim = torch.mean(torch.abs(torch.tensor(feat1) - torch.tensor(feat2)))
# losses.append(max_similarity)
# elif ((max_similarity < 0.30) and (max_label1 == max_label2.item())):
# # Compute loss (e.g., squared difference)
# # loss_sim = torch.mean(torch.abs(torch.tensor(feat1) - torch.tensor(feat2)))
# max_similarity=(max_similarity+1)/2
# losses.append(1-max_similarity)
if losses:
total_loss = (torch.sum(torch.stack(losses))/len(losses) )
else:
total_loss= torch.zeros(1, device=self.device)
return(total_loss)
# for feat2, label2, is_bb in zip(pseudo_featuers, pseudo_targets[:,1],pseudo_box):
# sim=-10
# for feat1_gr, label1 , ps_bb in zip( target_featuers, orignal_targets[:,1],target_box ):
# feat1 = feat1_gr.clone().detach()
# iou= self.calculate_iou(ps_bb,is_bb)
# feat2 = F.avg_pool2d(feat2, feat2.shape[2])
# feat1 = F.avg_pool2d(feat1, feat1.shape[2])
# if iou < 0.3:
# # Calculate similarity between features (e.g., cosine similarity)
# similarity = cosine_similarity(feat1,feat2).mean()
# if similarity > sim:
# sim=similarity
# max_similarity = similarity
# max_label1 =label1
# max_label2= label2
# # max_similarity=(max_similarity+1)/2
# # Compare labels
# if ((max_similarity > 0.95) and (max_label1 != max_label2)):
# # Compute loss (e.g., squared difference)
# # loss_sim = torch.mean(torch.abs(torch.tensor(feat1) - torch.tensor(feat2)))
# losses.append(max_similarity)
# elif ((max_similarity < 0.50) and (max_label1 == max_label2.item())):
# # Compute loss (e.g., squared difference)
# # loss_sim = torch.mean(torch.abs(torch.tensor(feat1) - torch.tensor(feat2)))
# max_similarity=(max_similarity+1)/2
# losses.append(1-max_similarity)
# if losses:
# total_loss = (torch.sum(torch.stack(losses))/len(losses) )
# else:
# total_loss= torch.zeros(1, device=self.device)
# return(total_loss)
|