File size: 22,707 Bytes
0b41393 86ebf00 0b41393 86ebf00 0b41393 86ebf00 0b41393 86ebf00 0b41393 98b1247 0b41393 19f554c 83c5435 0b41393 83c5435 0b41393 642b460 7bcc618 19f554c 0b41393 19f554c 98b1247 83c5435 98b1247 19f554c 98b1247 19f554c 98b1247 0b41393 83c5435 0b41393 19f554c 0b41393 98b1247 0b41393 98b1247 0b41393 2492149 0b41393 98b1247 0b41393 98b1247 0b41393 c7121ae fdc183f c7121ae 0b41393 98b1247 0b41393 98b1247 0b41393 98b1247 0b41393 5c11b43 0b41393 98b1247 0b41393 98b1247 0b41393 98b1247 0b41393 98b1247 e5eaec9 98b1247 0b41393 98b1247 0b41393 98b1247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import os
import gradio as gr
# from app_util import ContextDetDemo
import torch
import cv2
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from utils.my_model import MyCNN
from models.common import DetectMultiBackend
import numpy as np
import csv
import torch.nn.functional as F
from PIL import Image, ImageOps
from utils.augmentations import letterbox
from utils.general import (scale_boxes, non_max_suppression)
import pandas as pd
import os
from torchvision.ops import roi_align
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh,get_fixed_xyxy)
# Initialize Model with Error Handling
try:
# model = DetectMultiBackend('best.pt')
# model = DetectMultiBackend('best.pt')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
cell_attribute_model= MyCNN(num_classes=12, dropout_prob=0.5, in_channels=480).cpu()
folder_name = '/home/iml1/AR/Sparse_Det_TMI/Attribute_model'
custom_weights_path = f"Attridet_weight/Attrihead_hcm_100x.pth"
custom_weights = torch.load(custom_weights_path,map_location=torch.device('cpu'))
cell_attribute_model.load_state_dict(custom_weights)
cell_attribute_model.eval().to(device)
model = DetectMultiBackend('Attridet_weight/last_300e_100x.pt')
except Exception as e:
print(f"Error loading model: {e}")
header = """
<div align=center>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Leukemia Detection with Morphology Attributes
</h1>
</div>
"""
abstract = """
π€ This is the demo of the Paper <b> Leveraging Sparse Annotations for Leukemia Diagnosis on the Large Leukemia Dataset</b>.
π Our goal is to detect infected cells with Morphology for the bettre diagnosis explainabilty.
β‘ For faster inference, you may duplicate the space and use the GPU setting.
π§ͺ Note : Image size: 640Γ640 pixels, captured using a 100x microscope lens..
"""
footer = r"""
## π¦ Developed by
***Intelligent Machines Lab***, Information Technology University of Punjab
<a href="https://im.itu.edu.pk/" target="_blank">π website</a>
## π§ͺ Demo Paper
Our demo paper is available at: Leveraging Sparse Annotations for Leukemia Diagnosis on the Large Leukemia Dataset
<a href="" target="_blank">π arXiv:2405.10803</a>
## π¦ Github Repository
We would be grateful if you consider starring our
<a href="https://github.com/intelligentMachines-ITU/Blood-Cancer-Dataset-Lukemia-Attri-MICCAI-2024" target="_blank">β Blood Cancer Dataset Repository</a>
## π¦ Contact
If you have any questions, please feel free to contact Abdul Rehman <b>(phdcs23002@itu.edu.pk)</b>.
## π Citation
```bibtex
@inproceedings{rehman2025leveraging,
title={Leveraging Sparse Annotations for Leukemia Diagnosis on the Large Leukemia Dataset},
author={Rehman, Abdul and Meraj, Talha and Minhas, Aiman Mahmood and Imran, Ayisha and Ali, Mohsen and Sultani, Waqas and Shah, Mubarak},
booktitle={},
pages={},
year={2025},
organization={Springer}
}
"""
css = """
h1#title {
text-align: right;
}
"""
cloze_samples = [
["sample/18_33_1000_ALL.png"],
["sample/8_18_1000_ALL.png"],
["sample/15_20_1000_AML.png"],
["sample/21_32_1000_CLL.png"],
["sample/28_24_1000_CML.png"],
["sample/31_23_1000_CML.png"],
["sample/31_34_1000_CML.png"],
["sample/23_40_1000_APML.png"],
]
def capture_image(pil_img):
# if self.session_started:
# slide_number = self.slide_number_entry.text().strip()
# if slide_number:
# self.slide_dir = os.path.join(os.getcwd(), slide_number)
# # print(slide_dir)
# image_path = os.path.join(self.slide_dir, f"image_{self.image_counter}.png")
# ret, frame = self.camera.read()
# self.image_counter_label.setText(f"{self.image_counter}")
# cv2.imwrite(image_path, frame)
conf_thres=0.1
iou_thres=0.45
max_det=1000
hide_labels=False
hide_conf=False
all_predictions = []
# pil_img = Image.fromarray(frame)
image = pil_img.resize((640,640), Image.LANCZOS)
im0 = np.array(image)
annotated_img= im0
filled_text= "White blood cells are not presented in the image."
im = letterbox(im0, 640, 32, auto=True)[0] # padded resize
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(im)
img= torch.from_numpy(img)
# transform = transforms.Compose([
# transforms.ToPILImage(), # Convert numpy array to PIL Image
# transforms.Resize((640, 640)), # Resize image
# transforms.ToTensor(), # Convert PIL Image to tensor
# # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize
# ])
# # Add batch dimension
# # Inference
# # pred, int_feats = model(img, augment=False, visualize=False)
# frame=transform(frame)
img = img.half() if model.fp16 else img.float() # uint8 to fp16/32
img /= 255
# Inference
img=img.unsqueeze(0)
pred, int_feats,_ = model(img, augment=False, visualize=False)
#attri
int_feats_p2 = int_feats[0][0].to(torch.float32).unsqueeze(0)
int_feats_p3 = int_feats[1][0].to(torch.float32).unsqueeze(0)
in_channels = int_feats_p2.shape[1]+int_feats_p3.shape[1]
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, max_det=max_det)
if (len(pred[0])>0):
all_top_indices_cell_pred = []
top_indices_cell_pred = []
pred_Nuclear_Chromatin_array = []
pred_Nuclear_Shape_array = []
pred_Nucleus_array = []
pred_Cytoplasm_array = []
pred_Cytoplasmic_Basophilia_array = []
pred_Cytoplasmic_Vacuoles_array = []
for i in range(len(pred[0])):
# if pred[0][i].numel() > 0: # Check if the tensor is not empty
pred_tensor = pred[0][i][0:4]
if pred[0][i][5] != 0:
img_shape_tensor = torch.tensor([img.shape[2], img.shape[3],img.shape[2],img.shape[3]]).to(device)
normalized_xyxy=pred_tensor.to(device) / img_shape_tensor
p2_feature_shape_tensor = torch.tensor([int_feats[0].shape[1], int_feats[0].shape[2],int_feats[0].shape[1],int_feats[0].shape[2]]).to(device) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device)
p3_feature_shape_tensor = torch.tensor([int_feats[1].shape[1], int_feats[1].shape[2],int_feats[1].shape[1],int_feats[1].shape[2]]).to(device) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device)
p2_normalized_xyxy = normalized_xyxy*p2_feature_shape_tensor
p3_normalized_xyxy = normalized_xyxy*p3_feature_shape_tensor
p2_x_min, p2_y_min, p2_x_max, p2_y_max = get_fixed_xyxy(p2_normalized_xyxy,int_feats_p2)
p3_x_min, p3_y_min, p3_x_max, p3_y_max = get_fixed_xyxy(p3_normalized_xyxy,int_feats_p3)
p2_roi = torch.tensor([p2_x_min, p2_y_min, p2_x_max, p2_y_max], device=device).float()
p3_roi = torch.tensor([p3_x_min, p3_y_min, p3_x_max, p3_y_max], device=device).float()
batch_index = torch.tensor([0], dtype=torch.float32, device = device)
# Concatenate the batch index to the bounding box coordinates
p2_roi_with_batch_index = torch.cat([batch_index, p2_roi])
p3_roi_with_batch_index = torch.cat([batch_index, p3_roi])
p2_resized_object = roi_align(int_feats_p2.to(device), p2_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30))
p3_resized_object = roi_align(int_feats_p3.to(device), p3_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30))
concat_box = torch.cat([p2_resized_object,p3_resized_object],dim=1)
output_cell_prediction= cell_attribute_model(concat_box)
output_cell_prediction_prob = F.softmax(output_cell_prediction.view(6,2), dim=1)
top_indices_cell_pred = torch.argmax(output_cell_prediction_prob, dim=1)
pred_Nuclear_Chromatin_array.append(top_indices_cell_pred[0].item())
pred_Nuclear_Shape_array.append(top_indices_cell_pred[1].item())
pred_Nucleus_array.append(top_indices_cell_pred[2].item())
pred_Cytoplasm_array.append(top_indices_cell_pred[3].item())
pred_Cytoplasmic_Basophilia_array.append(top_indices_cell_pred[4].item())
pred_Cytoplasmic_Vacuoles_array.append(top_indices_cell_pred[5].item())
# all_top_indices_cell_pred.append(top_indices_cell_pred.item())
else:
# top_indices_cell_pred = torch.tensor([0,0,0,0,0,0]).to(device)
pred_Nuclear_Chromatin_array.append(4)
pred_Nuclear_Shape_array.append(4)
pred_Nucleus_array.append(4)
pred_Cytoplasm_array.append(4)
pred_Cytoplasmic_Basophilia_array.append(4)
pred_Cytoplasmic_Vacuoles_array.append(4)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Define the path for the CSV file
df_predictions = pd.DataFrame(columns=['Image Name', 'Prediction', 'Confidence', 'Nuclear Chromatin',
'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia',
'Cytoplasmic Vacuoles', 'x_min', 'y_min', 'x_max', 'y_max'])
# Function to add data to the DataFrame and plot labels
def write_to_dataframe(img, name, predicts, confid, pred_NC, pred_NS,
pred_N, pred_C, pred_CB, pred_CV,
x_min, y_min, x_max, y_max):
# global df_predictions
new_data = pd.DataFrame([{
'Image Name': name,
'Prediction': predicts,
'Confidence': confid,
'Nuclear Chromatin': pred_NC,
'Nuclear Shape': pred_NS,
'Nucleus': pred_N,
'Cytoplasm': pred_C,
'Cytoplasmic Basophilia': pred_CB,
'Cytoplasmic Vacuoles': pred_CV,
'x_min': x_min,
'y_min': y_min,
'x_max': x_max,
'y_max': y_max
}])
# df_predictions = pd.concat([df_predictions, new_data], ignore_index=True)
# Draw bounding box and label
# cv2.rectangle(img, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
# cv2.putText(img, predicts, (x_min, y_min - 10),
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return new_data
names = ["Unidentified", "Myeloblast", "Lymphoblast", "Neutrophil", "Atypical lymphocyte",
"Promonocyte", "Monoblast", "Lymphocyte", "Myelocyte", "Abnormal promyelocyte",
"Monocyte", "Metamyelocyte", "Eosinophil", "Basophil"]
# Process predictions
for i, det in enumerate(pred): # per image
# img = cv2.imread("image.png") # Load the image
for count, (*xyxy, conf, cls) in enumerate(det):
c = int(cls) # integer class
label = names[c]
confidence = float(conf)
confidence_str = f'{confidence:.2f}'
x_min, y_min, x_max, y_max = xyxy
new_data_update = write_to_dataframe (im0 , "image.png", label, confidence_str,
pred_Nuclear_Chromatin_array[count],
pred_Nuclear_Shape_array[count],
pred_Nucleus_array[count],
pred_Cytoplasm_array[count],
pred_Cytoplasmic_Basophilia_array[count],
pred_Cytoplasmic_Vacuoles_array[count],
int(x_min.detach().cpu().item()),
int(y_min.detach().cpu().item()),
int(x_max.detach().cpu().item()),
int(y_max.detach().cpu().item()))
df_predictions = pd.concat([df_predictions, new_data_update], ignore_index=True)
# Save or display the result
# cv2.imwrite("annotated_image.png", img)
# cv2.imshow("Annotated Image", img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# Optionally, display or export the DataFrame
result_list = []
# Conditions for each column
result_list.append("open" if (df_predictions['Nuclear Chromatin'] == 0).sum() > (df_predictions['Nuclear Chromatin'] == 1).sum() else "Coarse")
result_list.append("regular" if (df_predictions['Nuclear Shape'] == 0).sum() > (df_predictions['Nuclear Shape'] == 1).sum() else "irregular")
result_list.append("inconspicuous" if (df_predictions['Nucleus'] == 0).sum() > (df_predictions['Nucleus'] == 1).sum() else "prominent")
result_list.append("scanty" if (df_predictions['Cytoplasm'] == 0).sum() > (df_predictions['Cytoplasm'] == 1).sum() else "abundant")
result_list.append("slight" if (df_predictions['Cytoplasmic Basophilia'] == 0).sum() > (df_predictions['Cytoplasmic Basophilia'] == 1).sum() else "moderate")
result_list.append("absent" if (df_predictions['Cytoplasmic Vacuoles'] == 0).sum() > (df_predictions['Cytoplasmic Vacuoles'] == 1).sum() else "prominent")
# Sample text with <mask> placeholders
text = """These WBCβs are, <mask> chromatin, and <mask> shaped nuclei. The nucleoli are <mask>, and the cytoplasm is <mask> with <mask> basophilia. Cytoplasmic vacuoles are <mask>."""
# Replace <mask> with values from result_list
if not result_list:
filled_text = "No white blood cells are present in the image."
else:
filled_text = text.replace("<mask>", "{}").format(*result_list)
def plot_bboxes_from_dataframe(img, df_predictions):
# Iterate through the DataFrame
for _, row in df_predictions.iterrows():
# Extract coordinates (convert from string to int)
x_min, y_min, x_max, y_max = map(int, [row['x_min'], row['y_min'], row['x_max'], row['y_max']])
prediction = row['Prediction']
confidence = float(row['Confidence'])
# Skip predictions marked as 'None'
if prediction == "None":
continue
# Draw the bounding box
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), (0,255, 0), 2)
# Display prediction with confidence
# label = f"{prediction} ({confidence:.2f})"
label = f"{prediction}"
cv2.putText(img, label, (x_min, max(0, y_min - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0, 255), 2)
return img # Return the annotated image
# df_predictions.to_csv("predictions.csv", index=False) # Save if needed
annotated_img = plot_bboxes_from_dataframe(im0, df_predictions)
# cv2.rectangle(img, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
# cv2.putText(img, predicts, (x_min, y_min - 10)),
# print(df_predictions)
# else:
# QMessageBox.critical(self, "Error", "Please enter a slide number.")
# image_counter = 1
else:
annotated_img= im0
filled_text= "White blood cells are not presented in the image."
return annotated_img ,filled_text
# Process detections
# for i, det in enumerate(pred):
# if len(det):
# det[:, :4] = scale_boxes(img.shape[2:], det[:, :4], frame.shape).round()
# for *xyxy, conf, cls in reversed(det):
# c = int(cls) # integer class
# label = None if self.hide_labels else (model.names[c] if self.hide_conf else f'{model.names[c]} {conf:.2f}')
# img0 = self.plot_one_box(xyxy, frame, label=label, color=(0,255,0))
# # Save image with bounding boxes
# output_path = os.path.join(self.slide_dir, f"image_detection{self.image_counter}.png")
# if len(det):
# cv2.imwrite(output_path, img0)
# #QMessageBox.information(self, "Success", f"Image {self.image_counter} captured and saved.")
# self.image_counter += 1
# self.image_counter_label.setText(f"{self.image_counter}")
def inference_fn_select(image_input):
try:
# img = letterbox(image_input, (640, 640), stride=32, auto=True)[0] # Resize and pad image
# img = img.transpose(2, 0, 1)[::-1] # Convert to channel-first format
# img = np.ascontiguousarray(img)
results,filled_text = capture_image(image_input)
state = 1# Model inference
result_pil = Image.fromarray(results)
return result_pil,filled_text
except Exception as e:
return None, f"Error in inference: {e}"
def set_cloze_samples(example: list) -> dict:
return gr.update(value=example[0]), 'Cloze Test'
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown(header)
gr.Markdown(abstract)
state = gr.State([])
with gr.Row():
with gr.Column(scale=0.5, min_width=500):
image_input = gr.Image(type="pil", interactive=True, label="Upload an image π", height=250)
with gr.Column(scale=0.5, min_width=500):
task_button = gr.Radio(label="Contextual Task type", interactive=True,
choices=['Detect'],
value='Detect')
with gr.Row():
submit_button = gr.Button(value="π Run", interactive=True, variant="primary")
clear_button = gr.Button(value="π Clear", interactive=True)
with gr.Row():
with gr.Column(scale=0.5, min_width=500):
image_output = gr.Image(type='pil', interactive=False, label="Detection output")
with gr.Column(scale=0.5, min_width=500):
chat_output = gr.Textbox(label="Text output")
# with gr.Row():
# with gr.Column(scale=0.5, min_width=500):
with gr.Row():
cloze_examples = gr.Dataset(
label='Sample Images',
components=[image_input],
samples=cloze_samples,
)
submit_button.click(
inference_fn_select,
[image_input],
[image_output, chat_output],
)
clear_button.click(
lambda: (None, None, "", [], [], 'Detect'),
[],
[image_input, image_output, chat_output, task_button],
queue=False,
)
image_input.change(
lambda: (None, "", []),
[],
[image_output, chat_output],
queue=False,
)
cloze_examples.click(
fn=set_cloze_samples,
inputs=[cloze_examples],
outputs=[image_input, chat_output],
)
gr.Markdown(footer)
demo.queue() # Enable request queuing
demo.launch(share=False) |