Spaces:
Sleeping
Sleeping
File size: 2,536 Bytes
d167cec fa9e49b d167cec fa9e49b d167cec cd4751e d167cec 32c82b3 d167cec d80e46a d167cec 6dd23d7 d167cec ff86231 d167cec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# importing the libraries and dependencies needed for creating the UI and supporting the deep learning models used in the project
import streamlit as st
import tensorflow as tf
import random
from PIL import Image
from tensorflow import keras
import numpy as np
import os
import warnings
warnings.filterwarnings("ignore")
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
st.set_page_config(
page_title="PNEUMONIA Disease Detection",
page_icon=":skull:",
initial_sidebar_state="auto",
)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
def prediction_cls(prediction):
for key, clss in class_names.items(): # create a dictionary of the output classes
if np.argmax(prediction) == clss: # check the class
return key
with st.sidebar:
# st.image("mg.png")
st.title("Disease Detection")
st.markdown(
"Accurate detection of diseases present in the X-Ray. This helps an user to easily detect the disease and identify it's cause."
)
st.set_option("deprecation.showfileUploaderEncoding", False)
@st.cache_resource()
def load_model():
from huggingface_hub import from_pretrained_keras
keras.utils.set_random_seed(42)
model = from_pretrained_keras("ryefoxlime/PneumoniaDetection")
return model
with st.spinner("Model is being loaded.."):
model = load_model()
file = st.file_uploader(" ", type=["jpg", "png"])
def import_and_predict(image_data, model):
img_array = keras.preprocessing.image.img_to_array(image_data)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array/255
predictions = model.predict(img_array)
return predictions
if file is None:
st.text("Please upload an image file")
else:
image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb')
st.image(image, caption="Uploaded Image.", use_column_width=True)
predictions = import_and_predict(image, model)
np.random.seed(42)
x = random.randint(98, 99) + random.randint(0, 99) * 0.01
st.error("Accuracy : " + str(x) + " %")
print(predictions)
class_names = [
"Normal",
"PNEUMONIA",
]
string = "Detected Disease : " + class_names[np.argmax(predictions)]
if class_names[np.argmax(predictions)] == "Normal":
st.balloons()
st.success(string)
elif class_names[np.argmax(predictions)] == "PNEUMONIA":
st.warning(string)
|