Spaces:
Running
Running
File size: 9,027 Bytes
77b8357 6b31d07 affac96 a1e8d8f bae5b02 73a141a 1cdc167 73a141a 7298dcb e18b966 667b2dc f582005 667b2dc 73a141a 44ab821 a1e8d8f 2da8950 73a141a 6a04a92 73a141a 6c42480 1cdc167 6c42480 6b31d07 2da8950 44ab821 2da8950 6b31d07 11b16f9 6b31d07 11b16f9 90e81fe 0d1559c 90e81fe d62edfd 6b31d07 0d1559c 6b31d07 2da8950 6c42480 6b31d07 6c42480 2976cd5 6a04a92 07eaca0 6a04a92 07eaca0 6a04a92 6b31d07 a874e7a 6b31d07 acae979 6b31d07 2da8950 6b31d07 8de6323 f5d4c8d 6a04a92 d7c5520 b0a9bdd d7c5520 f5d4c8d 4cb9ad4 1cdc167 4f88aaf f5d4c8d 4f88aaf 8de6323 6b31d07 5a8bec0 2ea60c5 1cdc167 6b31d07 44ab821 6b31d07 5a8bec0 6b31d07 c6bb28f 7b28d3b 6b31d07 c6bb28f 6b31d07 4459ac3 a2107b5 ddcc691 a2107b5 6b31d07 4459ac3 bae5b02 4459ac3 6b31d07 97bd1ab 6b31d07 6f08e8f 6b31d07 a2107b5 6b31d07 8d4bf4d 9f50f0d a7325ef 6b31d07 119f6c6 6c42480 6570355 6b31d07 73a141a 119f6c6 6b31d07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import openai
import requests
import csv
import os
import langchain
import chromadb
import glob
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import TokenTextSplitter
#from langchain.llms import OpenAI
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.chains import ChatVectorDBChain
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain
# Use Chroma in Colab to create vector embeddings, I then saved them to HuggingFace so now I have to set it use them here.
#from chromadb.config import Settings
#client = chromadb.Client(Settings(
## chroma_db_impl="duckdb+parquet",
# persist_directory="./embeddings" # Optional, defaults to .chromadb/ in the current directory
#))
def get_empty_state():
return {"total_tokens": 0, "messages": []}
#Initial prompt template, others added below from TXT file
prompt_templates = {"All Needs Experts": "I want you to act as a needs assessment expert."}
def download_prompt_templates():
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
try:
response = requests.get(url)
reader = csv.reader(response.text.splitlines())
next(reader) # skip the header row
for row in reader:
if len(row) >= 2:
act = row[0].strip('"')
prompt = row[1].strip('"')
# description = row[2].strip('"')
prompt_templates[act] = prompt
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading prompt templates: {e}")
return
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
openai.api_key = os.environ['openai_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
# load in all the files
path = '/files'
#pdf_files = glob.glob(os.path.join(path, "*.pdf"))
pdf_files = glob.glob(os.path.join(path, "*.pdf"))
for file in pdf_files:
loader = PyPDFLoader(file)
pages = loader.load_and_split()
text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0)
split_pages = text_splitter.split_documents(pages)
persist_directory = "/embeddings"
embeddings = OpenAIEmbeddings()
vectordb = Chroma.from_documents(split_pages, embeddings, persist_directory=persist_directory)
vectordb.persist()
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']}", state
prompt_template = prompt_templates[prompt_template]
system_prompt = []
if prompt_template:
system_prompt = [{ "role": "system", "content": prompt_template }]
prompt_msg = { "role": "user", "content": prompt }
try:
#completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)
# completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)
#completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
#completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever())
#query = str(system_prompt + history[-context_length*2:] + [prompt_msg])
#completion = completion.run(query)
# from https://blog.devgenius.io/chat-with-document-s-using-openai-chatgpt-api-and-text-embedding-6a0ce3dc8bc8
completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever(), return_source_documents=False)
#completion = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff", retriever=vectordb.as_retriever(), return_source_documents=True)
query = str(system_prompt + history[-context_length*2:] + [prompt_msg])
#completion = completion({"query": query})
completion = completion.run(query)
# completion = completion({"question": query, "chat_history": history[-context_length*2:]})
# VectorDBQA.from_chain_type(llm=OpenAI(), chain_type="stuff", vectorstore=docsearch, return_source_documents=True)
# https://colab.research.google.com/drive/1dzdNDZyofRB0f2KIB4gHXmIza7ehMX30?usp=sharing#scrollTo=b-ejDn_JfpWW
history.append(prompt_msg)
history.append(completion.message.to_dict())
#history.append(completion.choices[0].message.to_dict())
#history.append(completion["result"].choices[0].message.to_dict())
state['total_tokens'] += completion['usage']['total_tokens']
except Exception as e:
history.append(prompt_msg)
history.append("error")
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
return '', chat_messages, total_tokens_used_msg, state
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""# Chat with Needs Assessment Experts (Past and Present)
## Ask questions of experts on needs assessments, get responses from *needs assessment* version of ChatGPT.
Ask questions of all of them, or pick your expert.""",
elem_id="header")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question and press enter", visible=True).style(container=False)
btn_submit = gr.Button("Submit")
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
btn_clear_conversation = gr.Button("Start New Conversation")
with gr.Column():
prompt_template = gr.Dropdown(label="Choose a expert:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = more creative/chaotic, Lower = just the guru")
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Max tokens per response")
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context length", info="Number of previous questions you have asked. Be careful with high values, it can blow up the token budget quickly.")
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
demo.queue(concurrency_count=10)
demo.launch(height='800px')
|