File size: 9,027 Bytes
77b8357
6b31d07
 
 
affac96
a1e8d8f
bae5b02
73a141a
1cdc167
73a141a
 
 
 
7298dcb
e18b966
667b2dc
f582005
667b2dc
73a141a
44ab821
a1e8d8f
2da8950
73a141a
 
6a04a92
73a141a
 
6c42480
1cdc167
6c42480
6b31d07
 
 
2da8950
 
44ab821
2da8950
6b31d07
11b16f9
6b31d07
11b16f9
 
90e81fe
 
 
 
 
0d1559c
90e81fe
d62edfd
6b31d07
 
 
 
 
 
 
0d1559c
6b31d07
 
 
 
 
2da8950
 
6c42480
6b31d07
6c42480
2976cd5
6a04a92
 
07eaca0
6a04a92
 
 
 
 
 
 
 
 
07eaca0
6a04a92
 
 
 
 
 
 
6b31d07
 
 
 
 
 
 
 
 
 
 
a874e7a
6b31d07
acae979
6b31d07
2da8950
6b31d07
8de6323
 
f5d4c8d
 
 
 
6a04a92
d7c5520
b0a9bdd
d7c5520
f5d4c8d
4cb9ad4
 
1cdc167
4f88aaf
f5d4c8d
 
4f88aaf
 
8de6323
6b31d07
5a8bec0
2ea60c5
1cdc167
6b31d07
44ab821
6b31d07
 
 
5a8bec0
6b31d07
c6bb28f
7b28d3b
6b31d07
c6bb28f
6b31d07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4459ac3
a2107b5
ddcc691
a2107b5
6b31d07
4459ac3
bae5b02
4459ac3
 
6b31d07
 
 
97bd1ab
6b31d07
 
6f08e8f
6b31d07
a2107b5
6b31d07
 
8d4bf4d
9f50f0d
a7325ef
6b31d07
119f6c6
6c42480
6570355
6b31d07
73a141a
119f6c6
6b31d07
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import openai
import requests
import csv
import os
import langchain
import chromadb
import glob


from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import TokenTextSplitter
#from langchain.llms import OpenAI
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.chains import ChatVectorDBChain
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain

# Use Chroma in Colab to create vector embeddings, I then saved them to HuggingFace so now I have to set it use them here.
#from chromadb.config import Settings
#client = chromadb.Client(Settings(
##    chroma_db_impl="duckdb+parquet",
#    persist_directory="./embeddings" # Optional, defaults to .chromadb/ in the current directory
#))



def get_empty_state():
    return {"total_tokens": 0, "messages": []}

    
#Initial prompt template, others added below from TXT file
prompt_templates = {"All Needs Experts": "I want you to act as a needs assessment expert."}

def download_prompt_templates():
    url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
    try:
        response = requests.get(url)
        reader = csv.reader(response.text.splitlines())
        next(reader)  # skip the header row
        for row in reader:
            if len(row) >= 2:
                act = row[0].strip('"')
                prompt = row[1].strip('"')
               # description = row[2].strip('"')
                prompt_templates[act] = prompt


    except requests.exceptions.RequestException as e:
        print(f"An error occurred while downloading prompt templates: {e}")
        return

    choices = list(prompt_templates.keys())
    choices = choices[:1] + sorted(choices[1:])
    return gr.update(value=choices[0], choices=choices)

def on_prompt_template_change(prompt_template):
    if not isinstance(prompt_template, str): return
    return prompt_templates[prompt_template]



def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):

    openai.api_key = os.environ['openai_key']
    os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
    
    # load in all the files
    path = '/files'
    #pdf_files = glob.glob(os.path.join(path, "*.pdf"))
    pdf_files = glob.glob(os.path.join(path, "*.pdf"))

    for file in pdf_files:
      loader = PyPDFLoader(file)
      pages = loader.load_and_split()
      text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0)
      split_pages = text_splitter.split_documents(pages)
     
    persist_directory = "/embeddings"
    embeddings = OpenAIEmbeddings()
    vectordb = Chroma.from_documents(split_pages, embeddings, persist_directory=persist_directory)
    vectordb.persist()



    
    history = state['messages']

    if not prompt:
        return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']}", state
    
    prompt_template = prompt_templates[prompt_template]

    system_prompt = []
    if prompt_template:
        system_prompt = [{ "role": "system", "content": prompt_template }]

    prompt_msg = { "role": "user", "content": prompt }


    try:
        #completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)

# completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)

        #completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
        #completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever())
        #query = str(system_prompt + history[-context_length*2:] +  [prompt_msg])
        #completion = completion.run(query)
        # from https://blog.devgenius.io/chat-with-document-s-using-openai-chatgpt-api-and-text-embedding-6a0ce3dc8bc8
        completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
        completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever(), return_source_documents=False)
        #completion = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff", retriever=vectordb.as_retriever(), return_source_documents=True)
        query = str(system_prompt + history[-context_length*2:] +  [prompt_msg])
        #completion = completion({"query": query})
        completion = completion.run(query)

#        completion = completion({"question": query, "chat_history": history[-context_length*2:]})


# VectorDBQA.from_chain_type(llm=OpenAI(), chain_type="stuff", vectorstore=docsearch, return_source_documents=True)
# https://colab.research.google.com/drive/1dzdNDZyofRB0f2KIB4gHXmIza7ehMX30?usp=sharing#scrollTo=b-ejDn_JfpWW
        
        history.append(prompt_msg)
        history.append(completion.message.to_dict())
        #history.append(completion.choices[0].message.to_dict())
        #history.append(completion["result"].choices[0].message.to_dict())

        state['total_tokens'] += completion['usage']['total_tokens']
    
    except Exception as e:
        history.append(prompt_msg)
        history.append("error")

    total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
    chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]

    return '', chat_messages, total_tokens_used_msg, state

def clear_conversation():
    return gr.update(value=None, visible=True), None, "", get_empty_state()


css = """
      #col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
      #chatbox {min-height: 400px;}
      #header {text-align: center;}
      #prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}
      #total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
      #label {font-size: 0.8em; padding: 0.5em; margin: 0;}
      .message { font-size: 1.2em; }
      """

with gr.Blocks(css=css) as demo:
    
    state = gr.State(get_empty_state())


    with gr.Column(elem_id="col-container"):

        gr.Markdown("""# Chat with Needs Assessment Experts (Past and Present)
                    ## Ask questions of experts on needs assessments, get responses from *needs assessment* version of ChatGPT.
                    Ask questions of all of them, or pick your expert.""",
                    elem_id="header")
        
 
        
        
        with gr.Row():
            with gr.Column():
                chatbot = gr.Chatbot(elem_id="chatbox")
                input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question and press enter", visible=True).style(container=False)
                btn_submit = gr.Button("Submit")
                total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
                btn_clear_conversation = gr.Button("Start New Conversation")
            with gr.Column():
                prompt_template = gr.Dropdown(label="Choose a expert:", choices=list(prompt_templates.keys()))
                prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
                with gr.Accordion("Advanced parameters", open=False):
                    temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = more creative/chaotic, Lower = just the guru")
                    max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Max tokens per response")
                    context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context length", info="Number of previous questions you have asked. Be careful with high values, it can blow up the token budget quickly.")

   
    btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
    input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
    btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
    prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
   

    
    demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)


demo.queue(concurrency_count=10)
demo.launch(height='800px')