Spaces:
Running
Running
File size: 11,707 Bytes
77b8357 6b31d07 affac96 a1e8d8f bae5b02 73a141a 37c02da 1cdc167 5320c7c af03c62 5320c7c 73a141a af03c62 7298dcb e18b966 667b2dc af03c62 73a141a 44ab821 a1e8d8f 2da8950 73a141a 6a04a92 73a141a 6c42480 1cdc167 7c45b28 6c42480 5320c7c 6b31d07 2da8950 8003c6b 9546f1b 2da8950 6b31d07 11b16f9 6b31d07 11b16f9 90e81fe 9546f1b 90e81fe 9546f1b 390942c d62edfd 6b31d07 b982841 6b31d07 33dddeb 0e71847 9546f1b 5941228 6b31d07 2da8950 6c42480 6b31d07 7c45b28 6a04a92 5320c7c 6a04a92 5320c7c 6a04a92 5320c7c 6a04a92 42cf399 5320c7c 42cf399 5320c7c 42cf399 5320c7c 42cf399 5320c7c 6a04a92 f478057 6b31d07 a874e7a 6b31d07 acae979 6b31d07 2da8950 6b31d07 8de6323 f5d4c8d 6a04a92 5320c7c d7c5520 5320c7c 4cb9ad4 5320c7c 1cdc167 4f88aaf f5d4c8d 42cf399 5320c7c 42cf399 25279a1 f478057 5320c7c f5d4c8d 5320c7c 2fa0584 5320c7c 4f88aaf f478057 aeece07 f478057 68ac0c3 1cdc167 6b31d07 44ab821 6b31d07 eb37076 2394274 eb37076 2394274 6b31d07 c6bb28f 25279a1 f478057 25279a1 53e540a 2394274 c6bb28f 6b31d07 51b7af6 0831a35 51b7af6 0831a35 a2107b5 ddcc691 5b77bb9 6b31d07 4459ac3 bae5b02 4459ac3 6b31d07 97bd1ab 6b31d07 6f08e8f 6b31d07 a2107b5 b982841 6b31d07 8d4bf4d 9f50f0d a7325ef 6b31d07 119f6c6 6c42480 6570355 6b31d07 131a904 51b7af6 6b31d07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
import openai
import requests
import csv
import os
import langchain
import chromadb
import glob
import pickle
from PyPDF2 import PdfReader
from PyPDF2 import PdfWriter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
#from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
#from langchain.vectorstores import Chroma
#from langchain.text_splitter import TokenTextSplitter
#from langchain.llms import OpenAI
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
#from langchain.chains import ChatVectorDBChain
#from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain
# Use Chroma in Colab to create vector embeddings, I then saved them to HuggingFace so now I have to set it use them here.
#from chromadb.config import Settings
#client = chromadb.Client(Settings(
## chroma_db_impl="duckdb+parquet",
# persist_directory="./embeddings" # Optional, defaults to .chromadb/ in the current directory
#))
openai.api_key = os.environ['openai_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
def get_empty_state():
return {"total_tokens": 0, "messages": []}
#Initial prompt template, others added below from TXT file
prompt_templates = {"All Needs Experts": "Respond as if you are combiation of all needs assessment experts."}
actor_description = {}
def download_prompt_templates():
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
try:
response = requests.get(url)
reader = csv.reader(response.text.splitlines())
next(reader) # skip the header row
for row in reader:
if len(row) >= 2:
act = row[0].strip('"')
prompt = row[1].strip('"')
description = row[2].strip('"')
prompt_templates[act] = prompt
actor_description[act] = description
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading prompt templates: {e}")
return
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
def on_prompt_template_change_description(prompt_template):
if not isinstance(prompt_template, str): return
return actor_description[prompt_template]
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
# load in all the files
#path = './files'
#pdf_files = glob.glob(os.path.join(path, "*.pdf"))
#pdf_files = glob.glob(os.path.join(path, "*.pdf"))
#for file in pdf_files:
# loader = PyPDFLoader(file)
# pages = loader.load_and_split()
# text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0)
# split_pages = text_splitter.split_documents(pages)
#persist_directory = "./embeddings"
#embeddings = OpenAIEmbeddings()
#vectordb = Chroma.from_documents(split_pages, embeddings, persist_directory=persist_directory)
#vectordb.persist()
path = './files'
pdf_files = glob.glob(os.path.join(path, "*.pdf"))
merger = PdfWriter()
# add all file in the list to the merger object
for pdf in pdf_files:
merger.append(pdf)
merger.write("merged-pdf.pdf")
merger.close()
reader = PdfReader("merged-pdf.pdf")
raw_text = ''
for i, page in enumerate(reader.pages):
text = page.extract_text()
if text:
raw_text += text
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 1000,
chunk_overlap = 200,
length_function = len,
)
texts = text_splitter.split_text(raw_text)
len(texts)
embeddings = OpenAIEmbeddings()
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']}", state
prompt_template = prompt_templates[prompt_template]
system_prompt = []
if prompt_template:
system_prompt = [{ "role": "system", "content": prompt_template }]
prompt_msg = { "role": "user", "content": prompt }
try:
#completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)
# completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)
#completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
#completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever())
#query = str(system_prompt + history[-context_length*2:] + [prompt_msg])
#completion = completion.run(query)
# from https://blog.devgenius.io/chat-with-document-s-using-openai-chatgpt-api-and-text-embedding-6a0ce3dc8bc8
#completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
#completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever(), return_source_documents=False)
#completion = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff", retriever=vectordb.as_retriever(), return_source_documents=True)
#query = str(system_prompt + history[-context_length*2:] + [prompt_msg])
#completion = completion({"query": query})
#completion = completion.run(query)
# completion = completion({"question": query, "chat_history": history[-context_length*2:]})
#with open("foo.pkl", 'rb') as f:
# new_docsearch = pickle.load(f)
docsearch = FAISS.from_texts(texts, embeddings)
#query = str(system_prompt + history[-context_length*2:] + [prompt_msg])
query = str(system_prompt + history + [prompt_msg])
docs = docsearch.similarity_search(query)
#print(docs[0].page_content)
chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff")
completion = chain.run(input_documents=docs, question=query)
completion = { "content": completion }
# VectorDBQA.from_chain_type(llm=OpenAI(), chain_type="stuff", vectorstore=docsearch, return_source_documents=True)
# https://colab.research.google.com/drive/1dzdNDZyofRB0f2KIB4gHXmIza7ehMX30?usp=sharing#scrollTo=b-ejDn_JfpWW
get_empty_state()
state.append(completion.copy())
#history.append(prompt_msg.copy())
#history.append(completion.copy())
#history.append(completion.choices[0].message.to_dict())
#history.append(completion["result"].choices[0].message.to_dict())
state['total_tokens'] += completion['usage']['total_tokens']
except Exception as e:
history.append(prompt_msg.copy())
error = {
"role": "system",
"content": f"Error: {e}"
}
history.append(error.copy())
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
chat_messages = [(prompt_msg['content'], completion['content'])]
#chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
#chat_messages = [(history[-2]['content'], history[-1]['content'])]
return '', chat_messages, total_tokens_used_msg, state
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
#with open("embeddings.pkl", 'rb') as f:
# new_docsearch = pickle.load(f)
#query = str("performance")
#docs = new_docsearch.similarity_search(query)
gr.Markdown("""# Chat with Needs Assessment Experts (Past and Present)
## Ask questions of experts on needs assessments, get responses from *needs assessment* version of ChatGPT.
Ask questions of all of them, or pick your expert.""" ,
elem_id="header")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question and press enter", visible=True).style(container=False)
btn_submit = gr.Button("Submit")
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
btn_clear_conversation = gr.Button("Start New Conversation")
with gr.Column():
prompt_template = gr.Dropdown(label="Choose a expert:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = more creative/chaotic, Lower = just the guru")
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Max tokens per response")
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context length", info="Number of previous questions you have asked. Be careful with high values, it can blow up the token budget quickly.")
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
#prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
demo.queue(concurrency_count=10)
demo.launch(height='800px')
|