Spaces:
Running
Running
File size: 32,193 Bytes
ac6791c 92c2a99 56d9758 28a4048 5c2bc3a 28a4048 92c2a99 28a4048 af539d6 56d9758 92c2a99 003c901 92c2a99 637171e 92c2a99 02de959 d3e9e96 92c2a99 0600933 dce2ac0 92c2a99 13dfb45 92c2a99 003c901 6798f5d bbf919d ba47ef6 9d6edfb 6798f5d 0ca4304 6798f5d b3e2548 92c2a99 13dfb45 5118516 43e8065 92c2a99 920908d 92c2a99 10b2753 92c2a99 5118516 92c2a99 10b2753 92c2a99 5118516 92c2a99 5118516 92c2a99 5118516 92c2a99 0ca4304 55302cd 92c2a99 f1a7d93 92c2a99 55302cd 92c2a99 0ca4304 92c2a99 0ca4304 92c2a99 527aebe 0054da1 92c2a99 637171e 527aebe 0054da1 92c2a99 501ff3f 92c2a99 9fcc44d 92c2a99 0054da1 92c2a99 0ca4304 92c2a99 13dfb45 4e7d540 92c2a99 9fcc44d 92c2a99 0ca4304 92c2a99 7bd7476 0054da1 92c2a99 0054da1 92c2a99 ba47ef6 f11eb0a 92c2a99 0ca4304 92c2a99 0054da1 cae2ff4 92c2a99 1158d9c 92c2a99 0054da1 92c2a99 0ca4304 92c2a99 13dfb45 92c2a99 61f90b1 92c2a99 0ca4304 92c2a99 92d1706 92c2a99 78b8854 92c2a99 0600933 92c2a99 78b8854 92c2a99 5045ba4 92c2a99 93d7318 0ca4304 92c2a99 78b8854 92c2a99 78b8854 92c2a99 93d7318 e679acf 92c2a99 0ca4304 e679acf 0569eb0 92c2a99 0569eb0 92c2a99 78b8854 92c2a99 e679acf 92c2a99 0ca4304 e679acf 1158d9c 78b8854 1158d9c 6bd735d 1158d9c 78b8854 1158d9c e679acf 1158d9c 0ca4304 1158d9c 12d4d39 92c2a99 4590834 92c2a99 4590834 92c2a99 00a4b63 11b480e eac8e20 11b480e 92c2a99 71dd3a7 92c2a99 0ca4304 92c2a99 0176780 92c2a99 2d867b0 0176780 2d867b0 0ca4304 2d867b0 4de56f6 2d867b0 20f289e 0ca4304 2d867b0 0ca4304 2d867b0 cfcef27 722f026 cfcef27 66443af cfcef27 2d867b0 cfcef27 722f026 cfcef27 4b8426d cfcef27 f1e7fd3 7d6857d 92c2a99 f1e7fd3 92c2a99 93d7318 92c2a99 12d4d39 92c2a99 23b9158 92c2a99 7d6857d 92c2a99 10772a6 4b8426d 9c176db f11eb0a 6bd735d f11eb0a 359e641 f11eb0a c5879fd f11eb0a 93d7318 f11eb0a c5879fd 66443af f11eb0a 9c176db f11eb0a 4f009dc 660ac3a 92c2a99 0ca4304 df44003 0ca4304 61f90b1 23b9158 bbf919d 20f289e 1052bf2 f2d2cf6 1052bf2 53b5315 660ac3a a68095e 4793a8f 22b417b 9d69781 4793a8f 22b417b 250deaf 9d69781 ac92f68 4793a8f ac92f68 05be320 5c3afcb 660ac3a 92c2a99 9ba9505 660ac3a 9ba9505 92c2a99 e35594e 92c2a99 eb75f54 6e3bf57 92c2a99 5245051 26f048e e679acf 92c2a99 26f048e 92c2a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
#https://medium.com/thedeephub/rag-chatbot-powered-by-langchain-openai-google-generative-ai-and-hugging-face-apis-6a9b9d7d59db
#https://github.com/AlaGrine/RAG_chatabot_with_Langchain/blob/main/RAG_notebook.ipynb
from langchain_community.document_loaders import (
PyPDFLoader,
TextLoader,
DirectoryLoader,
CSVLoader,
UnstructuredExcelLoader,
Docx2txtLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
import tiktoken
import gradio as gr
import csv
import os, tempfile, glob, random
from pathlib import Path
#from IPython.display import Markdown
from PIL import Image
from getpass import getpass
import numpy as np
from itertools import combinations
import pypdf
import requests
# LLM: openai and google_genai
import openai
from langchain_openai import OpenAI, OpenAIEmbeddings, ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_google_genai import GoogleGenerativeAIEmbeddings
# LLM: HuggingFace
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.llms import HuggingFaceHub
# langchain prompts, memory, chains...
from langchain.prompts import PromptTemplate, ChatPromptTemplate
from langchain.chains import ConversationalRetrievalChain
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from operator import itemgetter
from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough
from langchain.schema import Document, format_document
from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string
from langchain_google_genai import (
ChatGoogleGenerativeAI,
HarmBlockThreshold,
HarmCategory,
)
# OutputParser
from langchain_core.output_parsers import StrOutputParser
# Chroma: vectorstore
from langchain_community.vectorstores import Chroma
# Contextual Compression
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_transformers import EmbeddingsRedundantFilter,LongContextReorder
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CohereRerank
from langchain_community.llms import Cohere
from langchain.memory import ConversationSummaryBufferMemory,ConversationBufferMemory
from langchain.schema import Document
# Cohere
from langchain.retrievers.document_compressors import CohereRerank
from langchain_community.llms import Cohere
openai_api_key = os.environ['openai_key']
google_api_key = os.environ['gemini_key']
HF_key = os.environ['HF_token']
cohere_api_key = os.environ['cohere_api']
current_dir = os.getcwd()
prompt_templates = {"All Needs Experts": "Respond as if you are combination of all needs assessment experts."}
actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combination of all needs assessment experts."}
def get_empty_state():
return { "messages": []}
def download_prompt_templates():
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
try:
response = requests.get(url)
reader = csv.reader(response.text.splitlines())
next(reader) # skip the header row
for row in reader:
if len(row) >= 2:
act = row[0].strip('"')
prompt = row[1].strip('"')
description = row[2].strip('"')
prompt_templates[act] = prompt
actor_description[act] = description
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading prompt templates: {e}")
return
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
def on_prompt_template_change_description(prompt_template):
if not isinstance(prompt_template, str): return
return actor_description[prompt_template]
# set to load only PDF, but could change to set to specific directory, so that other files don't get embeddings
def langchain_document_loader():
"""
Load documents from the temporary directory (TMP_DIR).
Files can be in txt, pdf, CSV or docx format.
"""
#current_dir = os.getcwd()
#TMP_DIR = current_dir
global documents
documents = []
"""
txt_loader = DirectoryLoader(
TMP_DIR.as_posix(), glob="**/*.txt", loader_cls=TextLoader, show_progress=True
)
documents.extend(txt_loader.load())
"""
pdf_loader = DirectoryLoader(
current_dir, glob="*.pdf", loader_cls=PyPDFLoader, show_progress=True
)
documents.extend(pdf_loader.load())
"""
csv_loader = DirectoryLoader(
TMP_DIR.as_posix(), glob="**/*.csv", loader_cls=CSVLoader, show_progress=True,
loader_kwargs={"encoding":"utf8"}
)
documents.extend(csv_loader.load())
doc_loader = DirectoryLoader(
#TMP_DIR.as_posix(),
current_dir,
glob="**/*.docx",
loader_cls=Docx2txtLoader,
show_progress=True,
)
documents.extend(doc_loader.load())
"""
return documents
langchain_document_loader()
text_splitter = RecursiveCharacterTextSplitter(
separators = ["\n\n", "\n", " ", ""],
chunk_size = 1500,
chunk_overlap= 200
)
# Text splitting
chunks = text_splitter.split_documents(documents=documents)
# just FYI, does not impact anything
def tiktoken_tokens(documents,model="gpt-3.5-turbo"):
"""Use tiktoken (tokeniser for OpenAI models) to return a list of token lengths per document."""
encoding = tiktoken.encoding_for_model(model) # returns the encoding used by the model.
tokens_length = [len(encoding.encode(documents[i].page_content)) for i in range(len(documents))]
return tokens_length
chunks_length = tiktoken_tokens(chunks,model="gpt-3.5-turbo")
print(f"Number of tokens - Average : {int(np.mean(chunks_length))}")
print(f"Number of tokens - 25% percentile : {int(np.quantile(chunks_length,0.25))}")
print(f"Number of tokens - 50% percentile : {int(np.quantile(chunks_length,0.5))}")
print(f"Number of tokens - 75% percentile : {int(np.quantile(chunks_length,0.75))}")
# For embeddings I am just using the free HF model so others are turned off
def select_embeddings_model(LLM_service="HuggingFace"):
"""Connect to the embeddings API endpoint by specifying
the name of the embedding model.
if LLM_service == "OpenAI":
embeddings = OpenAIEmbeddings(
model='text-embedding-ada-002',
api_key=openai_api_key)
"""
"""
if LLM_service == "Google":
embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=google_api_key,
)
"""
if LLM_service == "HuggingFace":
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=HF_key,
#model_name="thenlper/gte-large"
model_name="sentence-transformers/all-MiniLM-l6-v2"
)
print("embedding model selected")
return embeddings
#embeddings_OpenAI = select_embeddings_model(LLM_service="OpenAI")
#embeddings_google = select_embeddings_model(LLM_service="Google")
embeddings_HuggingFace = select_embeddings_model(LLM_service="HuggingFace")
# Creates the DB that will hold the embedding vectors
def create_vectorstore(embeddings,documents,vectorstore_name):
"""Create a Chroma vector database."""
persist_directory = (current_dir + "/" + vectorstore_name)
embedding_function=embeddings
vector_store = Chroma.from_documents(
documents=documents,
embedding=embeddings,
persist_directory=persist_directory
)
print("created Chroma vector database")
return vector_store
create_vectorstores = True # change to True to create vectorstores
# Then we tell it to store the embeddings in the VectorStore (stickiong with HF for this)
if create_vectorstores:
"""
vector_store_OpenAI,_ = create_vectorstore(
embeddings=embeddings_OpenAI,
documents = chunks,
vectorstore_name="Vit_All_OpenAI_Embeddings",
)
print("vector_store_OpenAI:",vector_store_OpenAI._collection.count(),"chunks.")
"""
"""
vector_store_google,new_vectorstore_name = create_vectorstore(
embeddings=embeddings_google,
documents = chunks,
vectorstore_name="Vit_All_Google_Embeddings"
)
print("vector_store_google:",vector_store_google._collection.count(),"chunks.")
"""
vector_store_HF = create_vectorstore(
embeddings=embeddings_HuggingFace,
documents = chunks,
vectorstore_name="Vit_All_HF_Embeddings"
)
print("vector_store_HF:",vector_store_HF._collection.count(),"chunks.")
print("")
# Now we tell it to keep the chromadb persistent so that it can be referenced at any time
"""
vector_store_OpenAI = Chroma(
persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/Vit_All_OpenAI_Embeddings",
embedding_function=embeddings_OpenAI)
print("vector_store_OpenAI:",vector_store_OpenAI._collection.count(),"chunks.")
"""
"""
vector_store_google = Chroma(
persist_directory = current_dir + "/Vit_All_Google_Embeddings",
embedding_function=embeddings_google)
print("vector_store_google:",vector_store_google._collection.count(),"chunks.")
"""
vector_store_HF = Chroma(
persist_directory = current_dir + "/Vit_All_HF_Embeddings",
embedding_function=embeddings_HuggingFace)
print("vector_store_HF:",vector_store_HF._collection.count(),"chunks.")
# Now we create the code to retrieve embeddings from the vectorstore (again, sticking with HF)
def Vectorstore_backed_retriever(
vectorstore,search_type="similarity",k=10,score_threshold=None
):
"""create a vectorsore-backed retriever
Parameters:
search_type: Defines the type of search that the Retriever should perform.
Can be "similarity" (default), "mmr", or "similarity_score_threshold"
k: number of documents to return (Default: 4)
score_threshold: Minimum relevance threshold for similarity_score_threshold (default=None)
"""
print("vector_backed retriever started")
search_kwargs={}
if k is not None:
search_kwargs['k'] = k
if score_threshold is not None:
search_kwargs['score_threshold'] = score_threshold
global retriever
retriever = vectorstore.as_retriever(
search_type=search_type,
search_kwargs=search_kwargs
)
print("vector_backed retriever done")
return retriever
# similarity search
#base_retriever_OpenAI = Vectorstore_backed_retriever(vector_store_OpenAI,"similarity",k=10)
#base_retriever_google = Vectorstore_backed_retriever(vector_store_google,"similarity",k=10)
base_retriever_HF = Vectorstore_backed_retriever(vector_store_HF,"similarity",k=10)
# This next code takes the retrieved embeddings, gets rid of redundant ones, takes out non-useful information, and provides back a shorter embedding for use
def create_compression_retriever(embeddings, base_retriever, chunk_size=500, k=16, similarity_threshold=None):
"""Build a ContextualCompressionRetriever.
We wrap the the base_retriever (a vectorstore-backed retriever) into a ContextualCompressionRetriever.
The compressor here is a Document Compressor Pipeline, which splits documents
into smaller chunks, removes redundant documents, filters out the most relevant documents,
and reorder the documents so that the most relevant are at the top and bottom of the list.
Parameters:
embeddings: OpenAIEmbeddings, GoogleGenerativeAIEmbeddings or HuggingFaceInferenceAPIEmbeddings.
base_retriever: a vectorstore-backed retriever.
chunk_size (int): Documents will be splitted into smaller chunks using a CharacterTextSplitter with a default chunk_size of 500.
k (int): top k relevant chunks to the query are filtered using the EmbeddingsFilter. default =16.
similarity_threshold : minimum relevance threshold used by the EmbeddingsFilter. default =None.
"""
print("compression retriever started")
# 1. splitting documents into smaller chunks
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0, separator=". ")
# 2. removing redundant documents
redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings)
# 3. filtering based on relevance to the query
relevant_filter = EmbeddingsFilter(embeddings=embeddings, k=k, similarity_threshold=similarity_threshold) # similarity_threshold and top K
# 4. Reorder the documents
# Less relevant document will be at the middle of the list and more relevant elements at the beginning or end of the list.
# Reference: https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder
reordering = LongContextReorder()
# 5. Create compressor pipeline and retriever
pipeline_compressor = DocumentCompressorPipeline(
transformers=[splitter, redundant_filter, relevant_filter, reordering]
)
compression_retriever = ContextualCompressionRetriever(
base_compressor=pipeline_compressor,
base_retriever=base_retriever
)
print("compression retriever done")
return compression_retriever
compression_retriever_HF = create_compression_retriever(
embeddings=embeddings_HuggingFace,
base_retriever=base_retriever_HF,
k=16)
# Can use the following to rank the returned embeddings in order of relevance but all are used anyway so I am skipping for now (can test later)
'''
def CohereRerank_retriever(
base_retriever,
cohere_api_key,cohere_model="rerank-multilingual-v2.0", top_n=8
):
"""Build a ContextualCompressionRetriever using Cohere Rerank endpoint to reorder the results based on relevance.
Parameters:
base_retriever: a Vectorstore-backed retriever
cohere_api_key: the Cohere API key
cohere_model: The Cohere model can be either 'rerank-english-v2.0' or 'rerank-multilingual-v2.0', with the latter being the default.
top_n: top n results returned by Cohere rerank, default = 8.
"""
print("cohere rerank started")
compressor = CohereRerank(
cohere_api_key=cohere_api_key,
model=cohere_model,
top_n=top_n
)
retriever_Cohere = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=base_retriever
)
print("cohere rerank done")
return retriever_Cohere
'''
# Don't have to use this, but is brings all the above pieces together in a single series (probably not worth implementing since I have the pieces already)
'''
def retrieval_blocks(
create_vectorstore=True,# if True a Chroma vectorstore is created, else the Chroma vectorstore will be loaded
LLM_service="HuggingFace",
vectorstore_name="Vit_All_HF_Embeddings",
chunk_size = 1600, chunk_overlap=200, # parameters of the RecursiveCharacterTextSplitter
retriever_type="Vectorstore_backed_retriever",
base_retriever_search_type="similarity", base_retriever_k=10, base_retriever_score_threshold=None,
compression_retriever_k=16,
cohere_api_key="***", cohere_model="rerank-multilingual-v2.0", cohere_top_n=8,
):
print("retrieval blocks started")
"""
Rertieval includes: document loaders, text splitter, vectorstore and retriever.
Parameters:
create_vectorstore (boolean): If True, a new Chroma vectorstore will be created. Otherwise, an existing vectorstore will be loaded.
LLM_service: OpenAI, Google or HuggingFace.
vectorstore_name (str): the name of the vectorstore.
chunk_size and chunk_overlap: parameters of the RecursiveCharacterTextSplitter, default = (1600,200).
retriever_type (str): in [Vectorstore_backed_retriever,Contextual_compression,Cohere_reranker]
base_retriever_search_type: search_type in ["similarity", "mmr", "similarity_score_threshold"], default = similarity.
base_retriever_k: The most similar vectors to retrieve (default k = 10).
base_retriever_score_threshold: score_threshold used by the base retriever, default = None.
compression_retriever_k: top k documents returned by the compression retriever, default=16
cohere_api_key: Cohere API key
cohere_model (str): The Cohere model can be either 'rerank-english-v2.0' or 'rerank-multilingual-v2.0', with the latter being the default.
cohere_top_n: top n results returned by Cohere rerank, default = 8.
Output:
retriever.
"""
try:
# Create new Vectorstore (Chroma index)
if create_vectorstore:
# 1. load documents
documents = langchain_document_loader(current_dir)
# 2. Text Splitter: split documents to chunks
text_splitter = RecursiveCharacterTextSplitter(
separators = ["\n\n", "\n", " ", ""],
chunk_size = chunk_size,
chunk_overlap= chunk_overlap
)
chunks = text_splitter.split_documents(documents=documents)
# 3. Embeddings
embeddings = select_embeddings_model(LLM_service=LLM_service)
# 4. Vectorsore: create Chroma index
vector_store = create_vectorstore(
embeddings=embeddings,
documents = chunks,
vectorstore_name=vectorstore_name,
)
# 5. Load a Vectorstore (Chroma index)
else:
embeddings = select_embeddings_model(LLM_service=LLM_service)
vector_store = Chroma(
persist_directory = current_dir + "/" + vectorstore_name,
embedding_function=embeddings
)
# 6. base retriever: Vector store-backed retriever
base_retriever = Vectorstore_backed_retriever(
vector_store,
search_type=base_retriever_search_type,
k=base_retriever_k,
score_threshold=base_retriever_score_threshold
)
retriever = None
if retriever_type=="Vectorstore_backed_retriever":
retriever = base_retriever
# 7. Contextual Compression Retriever
if retriever_type=="Contextual_compression":
retriever = create_compression_retriever(
embeddings=embeddings,
base_retriever=base_retriever,
k=compression_retriever_k,
)
# 8. CohereRerank retriever
if retriever_type=="Cohere_reranker":
retriever = CohereRerank_retriever(
base_retriever=base_retriever,
cohere_api_key=cohere_api_key,
cohere_model=cohere_model,
top_n=cohere_top_n
)
print(f"\n{retriever_type} is created successfully!")
print(f"Relevant documents will be retrieved from vectorstore ({vectorstore_name}) which uses {LLM_service} embeddings \
and has {vector_store._collection.count()} chunks.")
print("retrieval blocks done")
return retriever
except Exception as e:
print(e)
'''
# Can use any of these LLMs for responses, for now I am Gemini-Pro for the bot (this is for responses now, not embeddings)
def instantiate_LLM(LLM_provider,api_key,temperature=0.7,top_p=0.95,model_name=None):
"""Instantiate LLM in Langchain.
Parameters:
LLM_provider (str): the LLM provider; in ["OpenAI","Google","HuggingFace"]
model_name (str): in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview",
"gemini-pro", "mistralai/Mistral-7B-Instruct-v0.2"].
api_key (str): google_api_key or openai_api_key or huggingfacehub_api_token
temperature (float): Range: 0.0 - 1.0; default = 0.5
top_p (float): : Range: 0.0 - 1.0; default = 1.
"""
if LLM_provider == "OpenAI":
llm = ChatOpenAI(
api_key=api_key,
model="gpt-3.5-turbo", # in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview"]
temperature=temperature,
model_kwargs={
"top_p": top_p
}
)
if LLM_provider == "Google":
llm = ChatGoogleGenerativeAI(
google_api_key=api_key,
model="gemini-pro", # "gemini-pro"
temperature=temperature,
top_p=top_p,
convert_system_message_to_human=True,
safety_settings={
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE},
)
if LLM_provider == "HuggingFace":
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.2", # "mistralai/Mistral-7B-Instruct-v0.2"
huggingfacehub_api_token=api_key,
model_kwargs={
"temperature":temperature,
"top_p": top_p,
"do_sample": True,
"max_new_tokens":1024
},
)
return llm
# This creates history (memory) of prior questions. I am using Gemini for this but I left the code if I decide to go to GPT later on.
def create_memory(model_name='gemini-pro',memory_max_token=None):
#def create_memory(model_name='gpt-3.5-turbo',memory_max_token=None):
"""Creates a ConversationSummaryBufferMemory for gpt-3.5-turbo.
Creates a ConversationBufferMemory for the other models."""
if model_name=="gpt-3.5-turbo":
if memory_max_token is None:
memory_max_token = 1024 # max_tokens for 'gpt-3.5-turbo' = 4096
memory = ConversationSummaryBufferMemory(
max_token_limit=memory_max_token,
llm=ChatOpenAI(model_name="gpt-3.5-turbo",openai_api_key=openai_api_key,temperature=0.1),
return_messages=True,
memory_key='chat_history',
output_key="answer",
input_key="question"
)
else:
memory = ConversationBufferMemory(
return_messages=True,
memory_key='chat_history',
output_key="answer",
input_key="question",
)
return memory
# Set a small memory_max_token, just to show how older messages are summarized if max_token_limit is exceeded.
memory = create_memory(model_name='gemini-pro',memory_max_token=None)
#memory = create_memory(model_name='gpt-3.5-turbo',memory_max_token=20)
# save history as context for the conversation
memory.save_context(
inputs={"question":"sample"},
outputs={"answer":"sample"}
)
# loads the template above
memory.load_memory_variables({})
# Create the prompt template for the conversation
standalone_question_template = """Given the following conversation and a follow up question,
rephrase the follow up question to be a standalone question, in the English language.\n\n
Chat History:\n{chat_history}\n
Follow Up Input: {question}\n
Standalone question: {question}"""
standalone_question_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template=standalone_question_template
)
def answer_template(language="english"):
"""Pass the standalone question along with the chat history and context
to the `LLM` wihch will answer"""
template = f"""Answer the question (convert to {language} language if it is not) at the end, using only the following context (delimited by <context></context>).
Your answer must be in the language at the end.
<context>
{{chat_history}}
{{context}}
</context>
Question: {{question}}
Language: {language}.
"""
return template
answer_prompt = ChatPromptTemplate.from_template(answer_template())
chain = ConversationalRetrievalChain.from_llm(
condense_question_prompt=standalone_question_prompt,
combine_docs_chain_kwargs={'prompt': answer_prompt},
condense_question_llm=instantiate_LLM(
LLM_provider="Google",api_key=google_api_key,temperature=0.1,
model_name="gemini-pro"),
memory=create_memory("gemini-pro"),
retriever = compression_retriever_HF,
#retriever = base_retriever_HF, #base_retriever_HF
llm=instantiate_LLM(
LLM_provider="Google",api_key=google_api_key,temperature=0.7,
model_name="gemini-pro"),
chain_type= "stuff",
verbose= True,
return_source_documents=True
)
'''
def create_ConversationalRetrievalChain(
llm,condense_question_llm,
retriever,
chain_type= 'stuff',
language="english",
model_name='gemini-pro'
#model_name='gpt-3.5-turbo'
):
"""Create a ConversationalRetrievalChain.
First, it passes the follow-up question along with the chat history to an LLM which rephrases
the question and generates a standalone query.
This query is then sent to the retriever, which fetches relevant documents (context)
and passes them along with the standalone question and chat history to an LLM to answer.
"""
# 1. Define the standalone_question prompt.
# Pass the follow-up question along with the chat history to the `condense_question_llm`
# which rephrases the question and generates a standalone question.
standalone_question_prompt = PromptTemplate(
input_variables=['chat_history', 'question'],
template="""Given the following conversation and a follow up question,
rephrase the follow up question to be a standalone question, in its original language.\n\n
Chat History:\n{chat_history}\n
Follow Up Input: {question}\n
Standalone question: {question}""")
# 2. Define the answer_prompt
# Pass the standalone question + the chat history + the context (retrieved documents) to the `LLM` wihch will answer
answer_prompt = ChatPromptTemplate.from_template(answer_template(language='English'))
# 3. Add ConversationSummaryBufferMemory for gpt-3.5, and ConversationBufferMemory for the other models
memory = create_memory(model_name)
# 4. Create the ConversationalRetrievalChain
chain = ConversationalRetrievalChain.from_llm(
condense_question_prompt=standalone_question_prompt,
combine_docs_chain_kwargs={'prompt': answer_prompt},
#condense_question_llm=condense_question_llm,
condense_question_llm=instantiate_LLM(
LLM_provider="Google",api_key=google_api_key,temperature=0.1,
model_name="gemini-pro"),
memory=memory,
retriever = compression_retriever_HF,
#retriever = base_retriever_HF, #changed this
#retriever = retriever,
#llm=llm, #changed this
llm=instantiate_LLM(
LLM_provider="Google",api_key=google_api_key,temperature=0.5,
model_name="gemini-pro"),
chain_type= "stuff",
#chain_type= chain_type,
verbose= True,
return_source_documents=True
)
print("Conversational retriever chain created successfully!")
return chain,memory
'''
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
history = state['messages']
global prompt_template_name
prompt_template_name = prompt_template
print(prompt_template) # prints who is responding if I move to multiple experts
print(prompt_templates[prompt_template])
completion = chain.invoke({"question":prompt})
chain.memory.load_memory_variables({})
get_empty_state()
state['content'] = completion
#state.append(completion.copy())
completion = { "content": completion }
print("completion text")
for document in completion['content']['source_documents']:
page_content = document.page_content # Use dot notation to access an attribute
print("Page_content:", page_content)
metadata = document.metadata # Use dot notation to access an attribute
print("Metadata:", metadata)
similarity_score = document.state['query_similarity_score']
print("Similarity_score:", similarity_score)
#chat_messages = [(prompt_msg['content'], completion['content'])]
chat_messages = [(prompt, completion['content']['answer'])]
return '', chat_messages, state # total_tokens_used_msg,
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px; min-height: 150px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""## Ask questions of our *needs assessment* bot!
""" ,
elem_id="header")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question", visible=True).style(container=False)
btn_submit = gr.Button("Submit")
#total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
btn_clear_conversation = gr.Button("Start New Conversation")
with gr.Column(visible=False):
prompt_template = gr.Dropdown(label="Choose an Expert:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = More AI, Lower = More Expert")
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Length of Response.")
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context Length", info="Number of previous questions you have asked.")
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state])
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, state])
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
demo.queue(concurrency_count=10)
demo.launch(height='800px')
|