File size: 12,836 Bytes
33b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
from types import SimpleNamespace
import sys
import torch
sys.path.append("..")
from training.config import SDSAERunnerConfig
from training.sd_activations_store import SDActivationsStore
from typing import Optional
import wandb
import tqdm
from training.k_sparse_autoencoder import SparseAutoencoder, unit_norm_decoder_, unit_norm_decoder_grad_adjustment_
import argparse
def weighted_average(points: torch.Tensor, weights: torch.Tensor):
weights = weights / weights.sum()
return (points * weights.view(-1, 1)).sum(dim=0)
@torch.no_grad()
def geometric_median_objective(
median: torch.Tensor, points: torch.Tensor, weights: torch.Tensor
) -> torch.Tensor:
norms = torch.linalg.norm(points - median.view(1, -1), dim=1) # type: ignore
return (norms * weights).sum()
def compute_geometric_median(
points: torch.Tensor,
weights: Optional[torch.Tensor] = None,
eps: float = 1e-6,
maxiter: int = 100,
ftol: float = 1e-20,
do_log: bool = False,
):
with torch.no_grad():
if weights is None:
weights = torch.ones((points.shape[0],), device=points.device)
new_weights = weights
median = weighted_average(points, weights)
objective_value = geometric_median_objective(median, points, weights)
if do_log:
logs = [objective_value]
else:
logs = None
early_termination = False
pbar = tqdm.tqdm(range(maxiter))
for _ in pbar:
prev_obj_value = objective_value
norms = torch.linalg.norm(points - median.view(1, -1), dim=1) # type: ignore
new_weights = weights / torch.clamp(norms, min=eps)
median = weighted_average(points, new_weights)
objective_value = geometric_median_objective(median, points, weights)
if logs is not None:
logs.append(objective_value)
if abs(prev_obj_value - objective_value) <= ftol * objective_value:
early_termination = True
break
pbar.set_description(f"Objective value: {objective_value:.4f}")
median = weighted_average(points, new_weights) # allow autodiff to track it
return SimpleNamespace(
median=median,
new_weights=new_weights,
termination=(
"function value converged within tolerance"
if early_termination
else "maximum iterations reached"
),
logs=logs,
)
class FeaturesStats:
def __init__(self, dim, logger, device):
self.dim = dim
self.logger = logger
self.device = device
self.reinit()
def reinit(self):
self.n_activated = torch.zeros(self.dim, dtype=torch.long, device=self.device)
self.n = 0
def update(self, inds):
self.n += inds.shape[0]
inds = inds.flatten().detach()
self.n_activated.scatter_add_(0, inds, torch.ones_like(inds))
def log(self):
self.logger.logkv('activated', (self.n_activated / self.n + 1e-9).log10().cpu().numpy())
RANK = 0
class Logger:
def __init__(self, sae_name, **kws):
self.vals = {}
self.enabled = (RANK == 0) and not kws.pop("dummy", False)
self.sae_name = sae_name
def logkv(self, k, v):
if self.enabled:
self.vals[f'{k}'] = v.detach() if isinstance(v, torch.Tensor) else v
return v
def dumpkvs(self, step):
if self.enabled:
wandb.log(self.vals, step=step)
self.vals = {}
def init_from_data_(ae, stats_acts_sample):
ae.pre_bias.data = (
compute_geometric_median(stats_acts_sample[:32768].float().cpu()).median.to(ae.device).float()
)
def explained_variance(recons, x):
# Compute the variance of the difference
diff = x - recons
diff_var = torch.var(diff, dim=0, unbiased=False)
# Compute the variance of the original tensor
x_var = torch.var(x, dim=0, unbiased=False)
# Avoid division by zero
explained_var = 1 - diff_var / (x_var + 1e-8)
return explained_var.mean()
def train_ksae_on_sd(
k_sparse_autoencoder: SparseAutoencoder,
activation_store: SDActivationsStore,
cfg: SDSAERunnerConfig
):
batch_size =cfg.batch_size
total_training_tokens = cfg.total_training_tokens
logger = Logger(
sae_name=cfg.sae_name,
dummy=False,
)
n_training_steps = 0
n_training_tokens = 0
optimizer = torch.optim.Adam(k_sparse_autoencoder.parameters(), lr=cfg.lr, eps=cfg.eps, fused=True)
stats_acts_sample = torch.cat(
[activation_store.next_batch().cpu() for _ in range(8)], dim=0
)
init_from_data_(k_sparse_autoencoder, stats_acts_sample)
mse_scale = (
1 / ((stats_acts_sample.float().mean(dim=0) - stats_acts_sample.float()) ** 2).mean()
)
mse_scale = mse_scale.item()
k_sparse_autoencoder.mse_scale = mse_scale
if cfg.log_to_wandb:
wandb.init(
config = vars(cfg),
project=cfg.wandb_project,
tags = [
str(cfg.batch_size),
cfg.block_name,
str(cfg.d_in),
str(cfg.k),
str(cfg.auxk),
str(cfg.lr),
]
)
fstats = FeaturesStats(cfg.d_sae, logger, cfg.device)
k_sparse_autoencoder.train()
k_sparse_autoencoder.to(cfg.device)
pbar = tqdm.tqdm(total=total_training_tokens, desc="Training SAE")
while n_training_tokens < total_training_tokens:
optimizer.zero_grad()
sae_in = activation_store.next_batch().to(cfg.device)
sae_out, loss, info = k_sparse_autoencoder(
sae_in,
)
n_training_tokens += batch_size
with torch.no_grad():
fstats.update(info['inds'])
bs = sae_in.shape[0]
logger.logkv('l0', info['l0'])
logger.logkv('not-activated 1e4', (k_sparse_autoencoder.stats_last_nonzero > 1e4 / bs).mean(dtype=float).item())
logger.logkv('not-activated 1e6', (k_sparse_autoencoder.stats_last_nonzero > 1e6 / bs).mean(dtype=float).item())
logger.logkv('not-activated 1e7', (k_sparse_autoencoder.stats_last_nonzero > 1e7 / bs).mean(dtype=float).item())
logger.logkv('explained variance', explained_variance(sae_out, sae_in))
logger.logkv('l2_div', (torch.linalg.norm(sae_out, dim=1) / torch.linalg.norm(sae_in, dim=1)).mean())
logger.logkv('train_recons', info['train_recons'])
logger.logkv('train_maxk_recons', info['train_maxk_recons'])
if cfg.log_to_wandb and ((n_training_steps + 1) % cfg.wandb_log_frequency == 0):
fstats.log()
fstats.reinit()
if "cuda" in str(cfg.device):
torch.cuda.empty_cache()
if ((n_training_steps + 1) % cfg.save_interval == 0):
k_sparse_autoencoder.save_to_disk(f"{cfg.save_path}/{n_training_steps + 1}")
pbar.set_description(
f"{n_training_steps}| MSE Loss {loss.item():.3f}"
)
pbar.update(batch_size)
loss.backward()
unit_norm_decoder_(k_sparse_autoencoder)
unit_norm_decoder_grad_adjustment_(k_sparse_autoencoder)
optimizer.step()
n_training_steps += 1
logger.dumpkvs(n_training_steps)
return k_sparse_autoencoder
def main(cfg):
k_sparse_autoencoder = SparseAutoencoder(n_dirs_local=cfg.d_sae,
d_model=cfg.d_in,
k=cfg.k,
auxk=cfg.auxk,
dead_steps_threshold=cfg.dead_toks_threshold //cfg.batch_size,
auxk_coef = cfg.auxk_coef)
activations_loader = SDActivationsStore(path_to_chunks=cfg.paths_to_latents,
block_name=cfg.block_name,
batch_size=cfg.batch_size)
if cfg.log_to_wandb:
wandb.init(project=cfg.wandb_project, config=cfg, name=cfg.run_name)
# train SAE
k_sparse_autoencoder = train_ksae_on_sd(
k_sparse_autoencoder, activations_loader, cfg
)
k_sparse_autoencoder.save_to_disk(f"{cfg.save_path}/final") # # save sae to checkpoints folder
if cfg.log_to_wandb:
wandb.finish()
return k_sparse_autoencoder
def parse_args():
parser = argparse.ArgumentParser(description="Parse SDSAERunnerConfig parameters")
# Add arguments with defaults
parser.add_argument('--paths_to_latents', type=str, default="I2P", help="Directory for extracted features")
parser.add_argument('--block_name', type=str, default="text_encoder.text_model.encoder.layers.10.28", help="Block name")
parser.add_argument('--use_cached_activations', action='store_true', help="Use cached activations", default=True)
parser.add_argument('--d_in', type=int, default=2048, help="Input dimensionality")
parser.add_argument('--auxk', type=str, default=256, help='Auxiliary k coefficient (auxk_coef)')
# SAE Parameters
parser.add_argument('--expansion_factor', type=int, default=32, help="Expansion factor")
parser.add_argument('--b_dec_init_method', type=str, default='mean', help="Decoder initialization method")
parser.add_argument('--k', type=int, default=32, help="Number of clusters")
# Training Parameters
parser.add_argument('--lr', type=float, default=0.0004, help="Learning rate")
parser.add_argument('--lr_scheduler_name', type=str, default='constantwithwarmup', help="Learning rate scheduler name")
parser.add_argument('--batch_size', type=int, default=4096, help="Batch size")
parser.add_argument('--lr_warm_up_steps', type=int, default=500, help="Number of warm-up steps")
parser.add_argument('--epoch', type=int, default=1000, help="Total training epochs")
parser.add_argument('--total_training_tokens', type=int, default=83886080, help="Total training tokens")
parser.add_argument('--dead_feature_threshold', type=float, default=1e-6, help="Dead feature threshold")
parser.add_argument('--auxk_coef', type=str, default="1/32", help='Auxiliary k coefficient (auxk_coef)')
# WANDB
parser.add_argument('--log_to_wandb', action='store_true', default=True, help="Log to WANDB")
parser.add_argument('--wandb_project', type=str, default='steerers', help="WANDB project name")
parser.add_argument('--wandb_entity', type=str, default=None, help="WANDB entity")
parser.add_argument('--wandb_log_frequency', type=int, default=500, help="WANDB log frequency")
# Misc
parser.add_argument('--device', type=str, default="cuda", help="Device to use (e.g., cuda, cpu)")
parser.add_argument('--seed', type=int, default=42, help="Random seed")
parser.add_argument('--checkpoint_path', type=str, default="Checkpoints", help="Checkpoint path")
parser.add_argument('--dtype', type=str, default="float32", help="Data type (e.g., float32)")
parser.add_argument('--save_interval', type=int, default=5000, help='Save interval (save_interval)')
return parser.parse_args()
def args_to_config(args):
return SDSAERunnerConfig(
paths_to_latents=args.paths_to_latents,
block_name=args.block_name,
use_cached_activations=args.use_cached_activations,
d_in=args.d_in,
expansion_factor=args.expansion_factor,
b_dec_init_method=args.b_dec_init_method,
k=args.k,
auxk = args.auxk,
lr=args.lr,
lr_scheduler_name=args.lr_scheduler_name,
batch_size=args.batch_size,
lr_warm_up_steps=args.lr_warm_up_steps,
total_training_tokens=args.total_training_tokens,
dead_feature_threshold=args.dead_feature_threshold,
log_to_wandb=args.log_to_wandb,
wandb_project=args.wandb_project,
wandb_entity=args.wandb_entity,
wandb_log_frequency=args.wandb_log_frequency,
device=args.device,
seed=args.seed,
save_path_base=args.checkpoint_path,
dtype=getattr(torch, args.dtype)
)
if __name__ == "__main__":
args = parse_args()
cfg = args_to_config(args)
print(cfg)
torch.cuda.empty_cache()
k_sparse_autoencoder = main(cfg)
|