File size: 8,077 Bytes
33b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import torch
import matplotlib.pyplot as plt
import os
from PIL import Image
import numpy as np

# Import your custom modules
from SDLens import HookedStableDiffusionXLPipeline
from training.k_sparse_autoencoder import SparseAutoencoder
from utils.hooks import add_feature_on_text_prompt

# Function to modulate hooks on prompt
def modulate_hook_prompt(sae, steering_feature, block):
    def hook_function(*args, **kwargs):
        return add_feature_on_text_prompt(
            sae,
            steering_feature,
            *args, **kwargs
        )
    return hook_function

# Function to load models
def load_models():
    try:
        # Load the Pipeline
        pipe = HookedStableDiffusionXLPipeline.from_pretrained('stabilityai/sdxl-turbo')
        pipe.set_progress_bar_config(disable=True)
        
        # Define blocks to save
        blocks_to_save = ['text_encoder.text_model.encoder.layers.10', 'text_encoder_2.text_model.encoder.layers.28']
        
        # Load the sparse autoencoder
        sae_path = "Checkpoints/dahyecheckpoint"
        sae = SparseAutoencoder.load_from_disk(os.path.join(sae_path, 'final'))
        
        return pipe, blocks_to_save, sae
    except Exception as e:
        print(f"Error loading models: {e}")
        return None, None, None

# Function to generate images with activation modulation
def activation_modulation_across_prompt(pipe, sae, blocks_to_save, steer_prompt, strength, prompt, guidance_scale, num_inference_steps, seed):
    # Generate steering feature
    output, cache = pipe.run_with_cache(
        steer_prompt,
        positions_to_cache=blocks_to_save,
        save_input=True,
        save_output=True,
        num_inference_steps=1,
        guidance_scale=guidance_scale,
        generator=torch.Generator(device="cpu").manual_seed(seed)
    )
    diff = torch.cat([cache['output'][blocks_to_save[0]], cache['output'][blocks_to_save[1]]], dim=-1)
    diff = diff.squeeze(0).squeeze(0)

    with torch.no_grad():
        activated = sae.encode_without_topk(diff)  # [77, 81920]
    mask = activated * strength

    to_add = mask @ sae.decoder.weight.T 
    steering_feature = to_add
    
    # Generate image with modulation
    output = pipe.run_with_hooks(
        prompt,
        position_hook_dict = {
            block: modulate_hook_prompt(sae, steering_feature, block)
            for block in blocks_to_save
        },
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=torch.Generator(device="cpu").manual_seed(seed)
    )

    return output.images[0]

# Function to generate images for the Gradio app
def generate_comparison(prompt, steer_prompt, strength, seed, guidance_scale, steps):
    if pipe is None or sae is None or blocks_to_save is None:
        return Image.new('RGB', (512, 512), color='red'), Image.new('RGB', (512, 512), color='red'), "Error: Models failed to load"
    
    try:
        # Generate image with standard model (strength = 0)
        standard_image = pipe(
            prompt,
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            generator=torch.Generator(device="cpu").manual_seed(seed)
        ).images[0]
        
        # Generate image with activation modulation
        if strength > 0:
            modified_image = activation_modulation_across_prompt(
                pipe, sae, blocks_to_save,
                steer_prompt, strength, prompt,
                guidance_scale, steps, seed
            )
        else:
            # If strength is 0, just return the standard image again to avoid redundant computation
            modified_image = standard_image
        
        comparison_message = f"Generated images with modulation strength: {strength}"
        return standard_image, modified_image, comparison_message
    except Exception as e:
        error_image = Image.new('RGB', (512, 512), color='red')
        return error_image, error_image, f"Error during generation: {str(e)}"

# Load the models at startup
print("Loading models...")
pipe, blocks_to_save, sae = load_models()
if pipe is not None:
    print("Models loaded successfully!")
else:
    print("Failed to load models")

# Define the Gradio interface
with gr.Blocks(title="SDXL Activation Modulation") as app:
    gr.Markdown("# SDXL Activation Modulation Comparison")
    gr.Markdown("""

    This app demonstrates activation modulation in Stable Diffusion XL using sparse autoencoders. 

    It compares standard SDXL-Turbo outputs with modulated outputs that can steer the generation based on a separate concept.

    """)
    
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", placeholder="Enter your main image prompt here...", value="A photo of a tree")
            steer_prompt = gr.Textbox(label="Steering Prompt", placeholder="Enter concept to steer with...", value="tree with autumn leaves")
            strength = gr.Slider(minimum=-2.5, maximum=2.5, value=0.8, step=0.05, 
                                label="Modulation Strength (λ)")
            
            with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(minimum=0, maximum=2147483647, step=1, value=61730, label="Seed")
                guidance_scale = gr.Slider(minimum=0.0, maximum=10.0, value=0.0, step=0.5, label="Guidance Scale")
                steps = gr.Slider(minimum=1, maximum=50, value=3, step=1, label="Inference Steps")
            
            generate_btn = gr.Button("Generate Comparison", variant="primary")
            status = gr.Textbox(label="Status", interactive=False)
    
    with gr.Row():
        standard_output = gr.Image(label="Standard SDXL-Turbo")
        modified_output = gr.Image(label="Modulated Output")
    
    gr.Markdown("""

    ## Examples from the notebook:

    - Main prompt: "A photo of a tree" with steering prompt: "tree with autumn leaves"

    - Main prompt: "A dog" with steering prompt: "full shot"

    - Main prompt: "A car" with steering prompt: "A blue car"

    """)
    
    with gr.Row():
        example1 = gr.Button("Example 1: Tree with autumn leaves")
        example2 = gr.Button("Example 2: Dog with full shot")
        example3 = gr.Button("Example 3: Blue car")
    
    # Set up button actions
    generate_btn.click(
        fn=generate_comparison,
        inputs=[prompt, steer_prompt, strength, seed, guidance_scale, steps],
        outputs=[standard_output, modified_output, status]
    )
    
    # Set up example button click events
    example1.click(
        fn=lambda: ["A photo of a tree", "tree with autumn leaves", 0.5, 61730, 0.0, 3],
        inputs=None,
        outputs=[prompt, steer_prompt, strength, seed, guidance_scale, steps]
    )
    
    example2.click(
        fn=lambda: ["A dog", "full shot", 0.4, 61730, 0.0, 3],
        inputs=None,
        outputs=[prompt, steer_prompt, strength, seed, guidance_scale, steps]
    )
    
    example3.click(
        fn=lambda: ["A car", "A blue car", 0.3, 61730, 0.0, 3],
        inputs=None,
        outputs=[prompt, steer_prompt, strength, seed, guidance_scale, steps]
    )
    
    gr.Markdown("""

    ## How to Use

    1. Enter your main prompt (what you want to generate)

    2. Enter a steering prompt (concept to influence the generation)

    3. Adjust the modulation strength slider (λ) - higher values mean stronger influence

    4. Click "Generate Comparison" to see the results side by side

    5. Use advanced settings if needed to adjust seed, guidance scale, or steps

    

    ## About

    This app demonstrates activation modulation using a sparse autoencoder trained on SDXL text encoder layers.

    The modulation allows steering the generation toward specific concepts without changing the main prompt.

    """)



# Launch the app
if __name__ == "__main__":
    app.launch()