Spaces:
Sleeping
Sleeping
File size: 17,120 Bytes
b2afdba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
"""
Conversation prompt template of Video-LLaMA.
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/minigpt4/conversation/conversation.py
"""
import argparse
import time
from PIL import Image
import sys
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
from transformers import StoppingCriteria, StoppingCriteriaList
import dataclasses
from enum import auto, Enum
from typing import List, Tuple, Any
import os
import sys
from global_local.common.registry import registry
from global_local.processors.video_processor import ToTHWC,ToUint8,load_video
from global_local.processors import Blip2ImageEvalProcessor
#from video_llama.models.ImageBind.data import load_and_transform_audio_data
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
LLAMA_2 = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
# system_img: List[Image.Image] = []
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
skip_next: bool = False
conv_id: Any = None
def get_prompt(self):
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system + self.sep
for role, message in self.messages:
if message:
ret += role + ": " + message + self.sep
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.LLAMA_2:
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
ret = ""
for i, (role, message) in enumerate(self.messages):
if i == 0:
assert message, "first message should not be none"
assert role == self.roles[0], "first message should come from user"
if message:
if type(message) is tuple:
message, _, _ = message
if i == 0: message = wrap_sys(self.system) + message
if i % 2 == 0:
message = wrap_inst(message)
ret += self.sep + message
else:
ret += " " + message + " " + self.sep2
else:
ret += ""
ret = ret.lstrip(self.sep)
return ret
else:
raise ValueError(f"Invalid style: {self.sep_style}")
def append_message(self, role, message):
self.messages.append([role, message])
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
# system_img=self.system_img,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
conv_id=self.conv_id)
def dict(self):
return {
"system": self.system,
# "system_img": self.system_img,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
"conv_id": self.conv_id,
}
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
CONV_VISION = Conversation(
system="Give the following image: <Img>ImageContent</Img>. "
"You will be able to see the image once I provide it to you. Please answer my questions.",
roles=("Human", "Assistant"),
messages=[],
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
default_conversation = Conversation(
system="",
roles=("Human", "Assistant"),
messages=[],
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_llava_llama_2 = Conversation(
system="You are a helpful language and vision assistant. "
"You are able to understand the visual content that the user provides, "
"and assist the user with a variety of tasks using natural language.",
roles=("USER", "ASSISTANT"),
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="<s>",
sep2="</s>",
)
class Chat:
def __init__(self, model, vis_processor, device='cuda:0'):
self.device = device
self.model = model
self.vis_processor = vis_processor
self.image_vis_processor = Blip2ImageEvalProcessor()
# stop_words_ids = [torch.tensor([835]).to(self.device),
# torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
# self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
self.num_frames_per_clip = 16
self.num_segments = 4
def ask(self, text, conv):
if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
and ('</Video>' in conv.messages[-1][1] or '</Image>' in conv.messages[-1][1]): # last message is image.
conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
else:
conv.append_message(conv.roles[0], text)
def answer(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000):
conv.append_message(conv.roles[1], None)
embs = self.get_context_emb(conv, img_list)
current_max_len = embs.shape[1] + max_new_tokens
if current_max_len - max_length > 0:
print('Warning: The number of tokens in current conversation exceeds the max length. '
'The model will not see the contexts outside the range.')
begin_idx = max(0, current_max_len - max_length)
embs = embs[:, begin_idx:]
if conv.sep =="###":
stop_words_ids = [torch.tensor([835]).to(self.device),
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
else:
stop_words_ids = [torch.tensor([2]).to(self.device)]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
# stopping_criteria
outputs = self.model.llama_model.generate(
inputs_embeds=embs,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping_criteria,
num_beams=num_beams,
do_sample=True,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
output_token = outputs[0]
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
output_token = output_token[1:]
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
if conv.sep =="###":
output_text = output_text.split('###')[0] # remove the stop sign '###'
output_text = output_text.split('Assistant:')[-1].strip()
else:
output_text = output_text.split(conv.sep2)[0] # remove the stop sign '###'
output_text = output_text.split(conv.roles[1]+':')[-1].strip()
conv.messages[-1][1] = output_text
return output_text, output_token.cpu().numpy()
def upload_video(self, video_path, conv, img_list):
msg = ""
if isinstance(video_path, str): # is a video path
ext = os.path.splitext(video_path)[-1].lower()
print(video_path)
# image = self.vis_processor(image).unsqueeze(0).to(self.device)
video, msg = load_video(
video_path=video_path,
n_frms=8,
height=224,
width=224,
sampling ="uniform", return_msg = True
)
video = self.vis_processor.transform(video)
video = video.unsqueeze(0).to(self.device)
# print(image)
else:
raise NotImplementedError
try:
audio_flag = 1
audio = load_and_transform_audio_data([video_path],"cpu", clips_per_video=8)
audio = audio.to(self.device)
except :
print('no audio is found')
audio_flag = 0
finally:
if audio_flag == 1:
# image_emb, _ = self.model.encode_videoQformer_audiovideo(video,audio)
image_emb, _ = self.model.encode_videoQformer_visual(video)
audio_emb,_ = self.model.encode_audioQformer(audio)
img_list.append(audio_emb)
img_list.append(image_emb)
conv.system = ""
# conv.append_message(conv.roles[0], "The audio of this video is <Video><ImageHere></Video> ")
conv.append_message(conv.roles[0], "Close your eyes, open your ears and you imagine only based on the sound that: <ImageHere>. \
Close your ears, open your eyes and you see that <Video><ImageHere></Video>. \
Now answer my question based on what you have just seen and heard.")
else: # only vison no audio
# conv.system = "You can understand the video that the user provides. Follow the instructions carefully and explain your answers in detail."
image_emb, _ = self.model.encode_videoQformer_visual(video)
img_list.append(image_emb)
conv.append_message(conv.roles[0], "<Video><ImageHere></Video> "+ msg)
return "Received."
def upload_video_without_audio(self, video_path, conv, img_list):
msg = ""
if isinstance(video_path, str): # is a video path
ext = os.path.splitext(video_path)[-1].lower()
print(video_path)
# image = self.vis_processor(image).unsqueeze(0).to(self.device)
video, msg = load_video(
video_path=video_path,
n_frms=self.num_frames_per_clip*self.num_segments,
height=224,
width=224,
sampling ="uniform", return_msg = True
)
video = self.vis_processor.transform(video)
video = video.unsqueeze(0).to(self.device)
else:
raise NotImplementedError
# conv.system = "You can understand the video that the user provides. Follow the instructions carefully and explain your answers in detail."
#image_emb, _ = self.model.encode_videoQformer_visual(video)
image_emb, _ = self.process_video_frames(video)
img_list.append(image_emb)
conv.append_message(conv.roles[0], "<Video><ImageHere></Video> "+ msg)
return "Received."
def process_video_frames(self, all_frames):
total_num_frames = self.num_frames_per_clip * self.num_segments
global_clip_indices = torch.linspace(0, total_num_frames-1, steps=self.num_frames_per_clip)
short_window_indices = torch.linspace(0, total_num_frames-1, steps=self.num_frames_per_clip * self.num_segments)
global_processed_frames = []
for i in global_clip_indices:
i = int(i)
curr = all_frames[:, :, i]
#curr = np.uint8(all_frames[i])
#curr = frame_transform(Image.fromarray(curr))
global_processed_frames.append(curr)
global_processed_frames = torch.stack(global_processed_frames, dim=2)
'''if len(global_processed_frames) < args.num_frames_per_clip:
diff = args.num_frames_per_clip - len(global_processed_frames)
pad = global_processed_frames[-1].unsqueeze(0).repeat(diff, 1, 1, 1)
global_processed_frames = torch.cat((global_processed_frames, pad), dim=0)'''
short_window_processed_frames = []
for i in short_window_indices:
i = int(i)
curr = all_frames[:, :, i]
#curr = np.uint8(all_frames[i])
#curr = frame_transform(Image.fromarray(curr))
short_window_processed_frames.append(curr)
short_window_processed_frames = torch.stack(short_window_processed_frames, dim=2)
'''if len(short_window_processed_frames) < args.num_frames_per_clip * args.num_segments:
diff = args.num_frames_per_clip * args.num_segments - len(short_window_processed_frames)
pad = short_window_processed_frames[-1].unsqueeze(0).repeat(diff, 1, 1, 1)
short_window_processed_frames = torch.cat((short_window_processed_frames, pad), dim=0)'''
global_attn_mask = torch.zeros((self.num_frames_per_clip))
global_attn_mask[:global_processed_frames.size(2)] = True
short_window_attn_mask = torch.zeros((self.num_frames_per_clip * self.num_segments))
short_window_attn_mask[:short_window_processed_frames.size(2)] = True
global_processed_frames = global_processed_frames.permute((0, 2, 1, 3, 4)).cuda()
short_window_processed_frames = short_window_processed_frames.permute((0, 2, 1, 3, 4)).cuda()
global_frame_attn_mask = global_attn_mask.unsqueeze(0).cuda()
segments_frame_attn_mask = short_window_attn_mask.unsqueeze(0).cuda()
with torch.no_grad():
samples = {'global_video': global_processed_frames, 'global_frame_attn_mask': global_frame_attn_mask, 'segments_video': short_window_processed_frames, 'segments_frame_attn_mask': segments_frame_attn_mask}
merged_video_embeds, merged_video_embeds_mask = self.model.compute_merged_video_embeds(samples)
return merged_video_embeds, merged_video_embeds_mask
def upload_img(self, image, conv, img_list):
msg = ""
if isinstance(image, str): # is a image path
raw_image = Image.open(image).convert('RGB') # 增加一个时间维度
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
elif isinstance(image, Image.Image):
raw_image = image
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
elif isinstance(image, torch.Tensor):
if len(image.shape) == 3:
image = image.unsqueeze(0)
image = image.to(self.device)
else:
raise NotImplementedError
image_emb, _ = self.model.encode_videoQformer_visual(image)
img_list.append(image_emb)
# Todo msg=""
conv.append_message(conv.roles[0], "<Image><ImageHere></Image> "+ msg)
return "Received."
def get_context_emb(self, conv, img_list):
prompt = conv.get_prompt()
prompt_segs = prompt.split('<ImageHere>')
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.model.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
# only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
return mixed_embs
if __name__ =='__main__':
video_path = '/mnt/workspace/videoGPT/Video-LLaMA/examples/applausing.mp4'
# import torch.classes.torchaudio.ffmpeg_StreamReader
# ffmpeg_StreamReader(video_path)
load_and_transform_audio_data([video_path],"cpu", clips_per_video=8)
|