File size: 17,120 Bytes
b2afdba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
Conversation prompt template of Video-LLaMA.
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/minigpt4/conversation/conversation.py 
"""
import argparse
import time
from PIL import Image
import sys
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
from transformers import StoppingCriteria, StoppingCriteriaList

import dataclasses
from enum import auto, Enum
from typing import List, Tuple, Any
import os
import sys
from global_local.common.registry import registry
from global_local.processors.video_processor import ToTHWC,ToUint8,load_video
from global_local.processors import Blip2ImageEvalProcessor
            
#from video_llama.models.ImageBind.data import load_and_transform_audio_data
class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()
    LLAMA_2 = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    # system_img: List[Image.Image] = []
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "###"
    sep2: str = None

    skip_next: bool = False
    conv_id: Any = None

    def get_prompt(self):
        if self.sep_style == SeparatorStyle.SINGLE:
            ret = self.system + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.LLAMA_2:
            wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
            wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
            ret = ""

            for i, (role, message) in enumerate(self.messages):
                if i == 0:
                    assert message, "first message should not be none"
                    assert role == self.roles[0], "first message should come from user"
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    if i == 0: message = wrap_sys(self.system) + message
                    if i % 2 == 0:
                        message = wrap_inst(message)
                        ret += self.sep + message
                    else:
                        ret += " " + message + " " + self.sep2
                else:
                    ret += ""
            ret = ret.lstrip(self.sep)
            return ret
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

    def append_message(self, role, message):
        self.messages.append([role, message])

    def to_gradio_chatbot(self):
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def copy(self):
        return Conversation(
            system=self.system,
            # system_img=self.system_img,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            conv_id=self.conv_id)

    def dict(self):
        return {
            "system": self.system,
            # "system_img": self.system_img,
            "roles": self.roles,
            "messages": self.messages,
            "offset": self.offset,
            "sep": self.sep,
            "sep2": self.sep2,
            "conv_id": self.conv_id,
        }


class StoppingCriteriaSub(StoppingCriteria):

    def __init__(self, stops=[], encounters=1):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop):])).item():
                return True

        return False


CONV_VISION = Conversation(
    system="Give the following image: <Img>ImageContent</Img>. "
           "You will be able to see the image once I provide it to you. Please answer my questions.",
    roles=("Human", "Assistant"),
    messages=[],
    offset=0,
    sep_style=SeparatorStyle.SINGLE,
    sep="###",
)

default_conversation = Conversation(
    system="",
    roles=("Human", "Assistant"),
    messages=[],
    offset=0,
    sep_style=SeparatorStyle.SINGLE,
    sep="###",
)
conv_llava_llama_2 = Conversation(
    system="You are a helpful language and vision assistant. "
           "You are able to understand the visual content that the user provides, "
           "and assist the user with a variety of tasks using natural language.",
    roles=("USER", "ASSISTANT"),
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.LLAMA_2,
    sep="<s>",
    sep2="</s>",
)
class Chat:
    def __init__(self, model, vis_processor, device='cuda:0'):
        self.device = device
        self.model = model
        self.vis_processor = vis_processor
        self.image_vis_processor = Blip2ImageEvalProcessor()
        # stop_words_ids = [torch.tensor([835]).to(self.device),
        #                   torch.tensor([2277, 29937]).to(self.device)]  # '###' can be encoded in two different ways.
        # self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

        self.num_frames_per_clip = 16
        self.num_segments = 4

    def ask(self, text, conv):
        if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
                and ('</Video>' in conv.messages[-1][1] or '</Image>' in conv.messages[-1][1]):  # last message is image.
            conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
        else:
            conv.append_message(conv.roles[0], text)

    def answer(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
               repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000):
        conv.append_message(conv.roles[1], None)
        embs = self.get_context_emb(conv, img_list)

        current_max_len = embs.shape[1] + max_new_tokens
        if current_max_len - max_length > 0:
            print('Warning: The number of tokens in current conversation exceeds the max length. '
                  'The model will not see the contexts outside the range.')
        begin_idx = max(0, current_max_len - max_length)

        embs = embs[:, begin_idx:]
        if conv.sep =="###":
            stop_words_ids = [torch.tensor([835]).to(self.device),
                          torch.tensor([2277, 29937]).to(self.device)]  # '###' can be encoded in two different ways.
            stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
        else:
            stop_words_ids = [torch.tensor([2]).to(self.device)]
            stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

        # stopping_criteria
        outputs = self.model.llama_model.generate(
            inputs_embeds=embs,
            max_new_tokens=max_new_tokens,
            stopping_criteria=stopping_criteria,
            num_beams=num_beams,
            do_sample=True,
            min_length=min_length,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            temperature=temperature,
        )
        output_token = outputs[0]
        if output_token[0] == 0:  # the model might output a unknow token <unk> at the beginning. remove it
            output_token = output_token[1:]
        if output_token[0] == 1:  # some users find that there is a start token <s> at the beginning. remove it
            output_token = output_token[1:]
        output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
        if conv.sep =="###":
            output_text = output_text.split('###')[0]  # remove the stop sign '###'
            output_text = output_text.split('Assistant:')[-1].strip()
        else:
            output_text = output_text.split(conv.sep2)[0]  # remove the stop sign '###'
            output_text = output_text.split(conv.roles[1]+':')[-1].strip()
        conv.messages[-1][1] = output_text
        return output_text, output_token.cpu().numpy()
    
    def upload_video(self, video_path, conv, img_list):

        msg = ""
        if isinstance(video_path, str):  # is a video path
            ext = os.path.splitext(video_path)[-1].lower()
            print(video_path)
            # image = self.vis_processor(image).unsqueeze(0).to(self.device)
            video, msg = load_video(
                video_path=video_path,
                n_frms=8,
                height=224,
                width=224,
                sampling ="uniform", return_msg = True
            )
            video = self.vis_processor.transform(video)
            video = video.unsqueeze(0).to(self.device)
            # print(image)
        else:
            raise NotImplementedError
        
        try:
            audio_flag = 1
            audio = load_and_transform_audio_data([video_path],"cpu",  clips_per_video=8)
            audio = audio.to(self.device)
        except :
            print('no audio is found')
            audio_flag = 0
        finally:
            if audio_flag == 1:
                # image_emb, _ = self.model.encode_videoQformer_audiovideo(video,audio)
                image_emb, _ = self.model.encode_videoQformer_visual(video)
                audio_emb,_  = self.model.encode_audioQformer(audio)
                img_list.append(audio_emb)
                img_list.append(image_emb)
                conv.system = ""
                # conv.append_message(conv.roles[0], "The audio of this video is <Video><ImageHere></Video> ")
                conv.append_message(conv.roles[0], "Close your eyes, open your ears and you imagine only based on the sound that: <ImageHere>. \
                Close your ears, open your eyes and you see that <Video><ImageHere></Video>.  \
                Now answer my question based on what you have just seen and heard.")

            else:  # only vison no audio
                # conv.system = "You can understand the video that the user provides. Follow the instructions carefully and explain your answers in detail."
                image_emb, _ = self.model.encode_videoQformer_visual(video)
                img_list.append(image_emb)
                conv.append_message(conv.roles[0], "<Video><ImageHere></Video> "+ msg)
            return "Received."

    def upload_video_without_audio(self, video_path, conv, img_list):
        msg = ""
        if isinstance(video_path, str):  # is a video path
            ext = os.path.splitext(video_path)[-1].lower()
            print(video_path)
            # image = self.vis_processor(image).unsqueeze(0).to(self.device)
            video, msg = load_video(
                video_path=video_path,
                n_frms=self.num_frames_per_clip*self.num_segments,
                height=224,
                width=224,
                sampling ="uniform", return_msg = True
            )

            video = self.vis_processor.transform(video)
            video = video.unsqueeze(0).to(self.device)
        else:
            raise NotImplementedError
        
        # conv.system = "You can understand the video that the user provides.  Follow the instructions carefully and explain your answers in detail."
        #image_emb, _ = self.model.encode_videoQformer_visual(video)
        image_emb, _ = self.process_video_frames(video)
        img_list.append(image_emb)
        conv.append_message(conv.roles[0], "<Video><ImageHere></Video> "+ msg)

        return "Received."

    def process_video_frames(self, all_frames):
        total_num_frames = self.num_frames_per_clip * self.num_segments
        global_clip_indices = torch.linspace(0, total_num_frames-1, steps=self.num_frames_per_clip)
        short_window_indices = torch.linspace(0, total_num_frames-1, steps=self.num_frames_per_clip * self.num_segments)

        global_processed_frames = []
        for i in global_clip_indices:
            i = int(i)
            curr = all_frames[:, :, i]
            #curr = np.uint8(all_frames[i])
            #curr = frame_transform(Image.fromarray(curr))
            global_processed_frames.append(curr)
        global_processed_frames = torch.stack(global_processed_frames, dim=2)

        '''if len(global_processed_frames) < args.num_frames_per_clip:
            diff = args.num_frames_per_clip - len(global_processed_frames)
            pad = global_processed_frames[-1].unsqueeze(0).repeat(diff, 1, 1, 1)
            global_processed_frames = torch.cat((global_processed_frames, pad), dim=0)'''

        short_window_processed_frames = []
        for i in short_window_indices:
            i = int(i)
            curr = all_frames[:, :, i]
            #curr = np.uint8(all_frames[i])
            #curr = frame_transform(Image.fromarray(curr))
            short_window_processed_frames.append(curr)
        short_window_processed_frames = torch.stack(short_window_processed_frames, dim=2)

        '''if len(short_window_processed_frames) < args.num_frames_per_clip * args.num_segments:
            diff = args.num_frames_per_clip * args.num_segments - len(short_window_processed_frames)
            pad = short_window_processed_frames[-1].unsqueeze(0).repeat(diff, 1, 1, 1)
            short_window_processed_frames = torch.cat((short_window_processed_frames, pad), dim=0)'''

        global_attn_mask = torch.zeros((self.num_frames_per_clip))
        global_attn_mask[:global_processed_frames.size(2)] = True

        short_window_attn_mask = torch.zeros((self.num_frames_per_clip * self.num_segments))
        short_window_attn_mask[:short_window_processed_frames.size(2)] = True

        global_processed_frames = global_processed_frames.permute((0, 2, 1, 3, 4)).cuda()
        short_window_processed_frames = short_window_processed_frames.permute((0, 2, 1, 3, 4)).cuda()
        global_frame_attn_mask = global_attn_mask.unsqueeze(0).cuda()
        segments_frame_attn_mask = short_window_attn_mask.unsqueeze(0).cuda()

        with torch.no_grad():
            samples = {'global_video': global_processed_frames, 'global_frame_attn_mask': global_frame_attn_mask, 'segments_video': short_window_processed_frames, 'segments_frame_attn_mask': segments_frame_attn_mask}
            merged_video_embeds, merged_video_embeds_mask = self.model.compute_merged_video_embeds(samples)

        return merged_video_embeds, merged_video_embeds_mask

    def upload_img(self, image, conv, img_list):

        msg = ""
        if isinstance(image, str):  # is a image path
            raw_image = Image.open(image).convert('RGB') # 增加一个时间维度
            image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
        elif isinstance(image, Image.Image):
            raw_image = image
            image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
        elif isinstance(image, torch.Tensor):
            if len(image.shape) == 3:
                image = image.unsqueeze(0)
            image = image.to(self.device)
        else:
            raise NotImplementedError

        image_emb, _ = self.model.encode_videoQformer_visual(image)
        img_list.append(image_emb)
        # Todo msg=""
        conv.append_message(conv.roles[0], "<Image><ImageHere></Image> "+ msg)

        return "Received."

    def get_context_emb(self, conv, img_list):
        prompt = conv.get_prompt()
        prompt_segs = prompt.split('<ImageHere>')
        assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
        seg_tokens = [
            self.model.llama_tokenizer(
                seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
            # only add bos to the first seg
            for i, seg in enumerate(prompt_segs)
        ]
        seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
        mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
        mixed_embs = torch.cat(mixed_embs, dim=1)

        return mixed_embs

if __name__ =='__main__':
    video_path = '/mnt/workspace/videoGPT/Video-LLaMA/examples/applausing.mp4'
    # import torch.classes.torchaudio.ffmpeg_StreamReader
    # ffmpeg_StreamReader(video_path)
    load_and_transform_audio_data([video_path],"cpu",  clips_per_video=8)