File size: 7,809 Bytes
b2afdba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Adapted from salesforce@LAVIS. Below is the original copyright:
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import contextlib
import logging
import os
import time
import datetime

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F

import global_local.common.dist_utils as dist_utils
from global_local.common.dist_utils import download_cached_file
from global_local.common.utils import is_url
from global_local.common.logger import MetricLogger
from global_local.models.base_model import BaseModel
from global_local.models.Qformer import BertConfig, BertLMHeadModel
from global_local.models.eva_vit import create_eva_vit_g
from transformers import BertTokenizer


class Blip2Base(BaseModel):
    @classmethod
    def init_tokenizer(cls):
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        tokenizer.add_special_tokens({"bos_token": "[DEC]"})
        return tokenizer

    def maybe_autocast(self, dtype=torch.float16):
        # if on cpu, don't use autocast
        # if on gpu, use autocast with dtype if provided, otherwise use torch.float16
        enable_autocast = self.device != torch.device("cpu")

        if enable_autocast:
            return torch.cuda.amp.autocast(dtype=dtype)
        else:
            return contextlib.nullcontext()

    @classmethod
    def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):
        encoder_config = BertConfig.from_pretrained("bert-base-uncased")
        encoder_config.encoder_width = vision_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = cross_attention_freq
        encoder_config.query_length = num_query_token
        Qformer = BertLMHeadModel(config=encoder_config)
        query_tokens = nn.Parameter(
            torch.zeros(1, num_query_token, encoder_config.hidden_size)
        )
        query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
        return Qformer, query_tokens

    @classmethod
    def init_vision_encoder(
        cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision
    ):
        assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4"
        visual_encoder = create_eva_vit_g(
            img_size, drop_path_rate, use_grad_checkpoint, precision
        )

        ln_vision = LayerNorm(visual_encoder.num_features)
        return visual_encoder, ln_vision

    def load_from_pretrained(self, url_or_filename):
        if is_url(url_or_filename):
            cached_file = download_cached_file(
                url_or_filename, check_hash=False, progress=True
            )
            checkpoint = torch.load(cached_file, map_location="cpu")
        elif os.path.isfile(url_or_filename):
            checkpoint = torch.load(url_or_filename, map_location="cpu")
        else:
            raise RuntimeError("checkpoint url or path is invalid")

        state_dict = checkpoint["model"]

        msg = self.load_state_dict(state_dict, strict=False)

        # logging.info("Missing keys {}".format(msg.missing_keys))
        logging.info("load checkpoint from %s" % url_or_filename)

        return msg


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


def compute_sim_matrix(model, data_loader, **kwargs):
    k_test = kwargs.pop("k_test")

    metric_logger = MetricLogger(delimiter="  ")
    header = "Evaluation:"

    logging.info("Computing features for evaluation...")
    start_time = time.time()

    texts = data_loader.dataset.text
    num_text = len(texts)
    text_bs = 256
    text_ids = []
    text_embeds = []
    text_atts = []
    for i in range(0, num_text, text_bs):
        text = texts[i : min(num_text, i + text_bs)]
        text_input = model.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=35,
            return_tensors="pt",
        ).to(model.device)
        text_feat = model.forward_text(text_input)
        text_embed = F.normalize(model.text_proj(text_feat))
        text_embeds.append(text_embed)
        text_ids.append(text_input.input_ids)
        text_atts.append(text_input.attention_mask)

    text_embeds = torch.cat(text_embeds, dim=0)
    text_ids = torch.cat(text_ids, dim=0)
    text_atts = torch.cat(text_atts, dim=0)

    vit_feats = []
    image_embeds = []
    for samples in data_loader:
        image = samples["image"]

        image = image.to(model.device)
        image_feat, vit_feat = model.forward_image(image)
        image_embed = model.vision_proj(image_feat)
        image_embed = F.normalize(image_embed, dim=-1)

        vit_feats.append(vit_feat.cpu())
        image_embeds.append(image_embed)

    vit_feats = torch.cat(vit_feats, dim=0)
    image_embeds = torch.cat(image_embeds, dim=0)

    sims_matrix = []
    for image_embed in image_embeds:
        sim_q2t = image_embed @ text_embeds.t()
        sim_i2t, _ = sim_q2t.max(0)
        sims_matrix.append(sim_i2t)
    sims_matrix = torch.stack(sims_matrix, dim=0)

    score_matrix_i2t = torch.full(
        (len(data_loader.dataset.image), len(texts)), -100.0
    ).to(model.device)

    num_tasks = dist_utils.get_world_size()
    rank = dist_utils.get_rank()
    step = sims_matrix.size(0) // num_tasks + 1
    start = rank * step
    end = min(sims_matrix.size(0), start + step)

    for i, sims in enumerate(
        metric_logger.log_every(sims_matrix[start:end], 50, header)
    ):
        topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
        image_inputs = vit_feats[start + i].repeat(k_test, 1, 1).to(model.device)
        score = model.compute_itm(
            image_inputs=image_inputs,
            text_ids=text_ids[topk_idx],
            text_atts=text_atts[topk_idx],
        ).float()
        score_matrix_i2t[start + i, topk_idx] = score + topk_sim

    sims_matrix = sims_matrix.t()
    score_matrix_t2i = torch.full(
        (len(texts), len(data_loader.dataset.image)), -100.0
    ).to(model.device)

    step = sims_matrix.size(0) // num_tasks + 1
    start = rank * step
    end = min(sims_matrix.size(0), start + step)

    for i, sims in enumerate(
        metric_logger.log_every(sims_matrix[start:end], 50, header)
    ):
        topk_sim, topk_idx = sims.topk(k=k_test, dim=0)
        image_inputs = vit_feats[topk_idx.cpu()].to(model.device)
        score = model.compute_itm(
            image_inputs=image_inputs,
            text_ids=text_ids[start + i].repeat(k_test, 1),
            text_atts=text_atts[start + i].repeat(k_test, 1),
        ).float()
        score_matrix_t2i[start + i, topk_idx] = score + topk_sim

    if dist_utils.is_dist_avail_and_initialized():
        dist.barrier()
        torch.distributed.all_reduce(
            score_matrix_i2t, op=torch.distributed.ReduceOp.SUM
        )
        torch.distributed.all_reduce(
            score_matrix_t2i, op=torch.distributed.ReduceOp.SUM
        )

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logging.info("Evaluation time {}".format(total_time_str))

    return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()