Spaces:
Sleeping
Sleeping
File size: 9,258 Bytes
850b35f fb6ba9d 850b35f cf6eb72 850b35f 4328bde 850b35f b202a5e 850b35f ee02c03 850b35f cf6eb72 4328bde faae59d 850b35f faae59d 850b35f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import requests
import io
from transformers import pipeline
from PIL import Image
#import streamlit as st
#import pandas as pd
#import matplotlib.pyplot as plt
st.title('Playing cards Image Analysis')
#sample slider; feel free to remove:
#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)
'''
This next piece of code will hit GitHub for two csv files
One is the original dataset, broken up into test, train, valid.
The second csv is the test dataset, with the results after the models were run through the API
'''
# Downloading the csv file from your GitHub account
url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/cards.csv"
download = requests.get(url).content
# Reading the downloaded content and turning it into a pandas data frame
df = pd.read_csv(io.StringIO(download.decode('utf-8')))
#df = pd.read_csv('playing_cards/cards.csv').sort_values('class index')
df_fulldataset=df
# Downloading the csv file from your GitHub account
url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/ML_results.csv"
download = requests.get(url).content
# Reading the downloaded content and turning it into a pandas data frame
df = pd.read_csv(io.StringIO(download.decode('utf-8')))
#df = pd.read_csv('playing_cards/cards.csv').sort_values('class index')
df_test = df
# Create the button
if st.button('Click me to re-run code',key='RunCode_button'):
# Call the function when the button is clicked
st.experimental_rerun()
st.header('Sample of the .csv data:')
x = st.slider('Select a value',value=10,max_value=8000)
st.table(df_fulldataset.sample(x))
### HORIZONTAL BAR ###
st.header('Distribution of the playing card images:')
# Get the value counts of the 'labels' column
value_counts = df_fulldataset.groupby('labels')['class index'].count().iloc[::-1]
fig, ax = plt.subplots(figsize=(10,10))
# Create a bar chart of the value counts
ax = value_counts.plot.barh()
# Set the chart title and axis labels
ax.set_title('Value Counts of Labels')
ax.set_xlabel('Label')
ax.set_ylabel('Count')
# Show the chart
st.pyplot(fig)
### PIE CHART ###
st.header('Balance of Train,Valid,Test datasets:')
# Get the value counts of the 'labels' column
value_counts = df_fulldataset.groupby('data set')['class index'].count().iloc[::-1]
value_counts =df_fulldataset['data set'].value_counts()
fig, ax = plt.subplots(figsize=(5,5)
)
# Create a bar chart of the value counts
ax = value_counts.plot.pie(autopct='%1.1f%%')
# Set the chart title and axis labels
# Show the chart
st.pyplot(fig)
models_run= ['SwinForImageClassification_24',
'ViTForImageClassification_22',
'SwinForImageClassification_21',
'ResNetForImageClassification_23',
'BeitForImageClassification_25']
from enum import Enum
API_dict = dict(
SwinForImageClassification_21="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099221",
ViTForImageClassification_22="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099222",
ResNetForImageClassification_23= "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099223",
SwinForImageClassification_24 = "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099224",
BeitForImageClassification_25="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099225")
pipeline_dict = dict(
SwinForImageClassification_21="rwcuffney/autotrain-pick_a_card-3726099221",
ViTForImageClassification_22="rwcuffney/autotrain-pick_a_card-3726099222",
ResNetForImageClassification_23= "rwcuffney/autotrain-pick_a_card-3726099223",
SwinForImageClassification_24 = rwcuffney/autotrain-pick_a_card-3726099224",
BeitForImageClassification_25="rwcuffney/autotrain-pick_a_card-3726099225")
# printing enum member as string
#print(Api_URL.ViTForImageClassification_22.value)
####Try it out ###
import requests
st.header("Try it out")
'''
Warning: it will error out at first, resubmit a few times.
Each model needs to 'warm up' before they start working.
You can use any image... try test/queen of hearts/4.jpg to see an example that
Got different results with different models
'''
headers = {"Authorization": "Bearer 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"}
def query(filename,api_url):
#with open(filename, "rb") as f:
#data = f.read()
response = requests.post(api_url, headers=headers, data=filename)
return response.json()
#API_URL = "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099224"
##### FORM #####
with st.form("api_form"):
api = st.selectbox('Which model do you want to try?',models_run,key='select_box')
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
# To read file as bytes:
bytes_data = uploaded_file.getvalue()
#st.write(bytes_data)
image = Image.open(uploaded_file)
submitted = st.form_submit_button("Submit")
if submitted:
pipeline = pipeline(task="image-classification", model=pipeline_dict[api])
def predict(image):
predictions = pipeline(image)
return {p["label"]: p["score"] for p in predictions}
prediction = predict(image)
st.write(prediction)
#st.write(API_dict[api])
#output = query(bytes_data,API_dict[api])
#prediction = output[0]['label']
#st.write(f'prediction = {prediction}')
#st.text(output)
#### FUNCTIONS ####
import sklearn
from sklearn import metrics
import matplotlib.pyplot as plt
index = ['accuracy_score','Weighted f1', 'Cohen Kappa','Matthews']
df_Metrics =pd.DataFrame(index=index)
labels = df_test['labels'].unique()
### FUNCTION TO SHOW THE METRICS
def show_metrics(test,pred,name):
from sklearn import metrics
my_Name = name
my_Accuracy_score=metrics.accuracy_score(test, pred)
#my_ROC_AUC_score= roc_auc_score(y, model.predict_proba(X), multi_class='ovr')
my_Weighted_f1= metrics.f1_score(test, pred,average='weighted')
my_Cohen_Kappa = metrics.cohen_kappa_score(test, pred)
my_Matthews_coefficient=metrics.matthews_corrcoef(test, pred)
st.header(f'Metrics for {my_Name}:')
report =metrics.classification_report(test, pred, output_dict=True)
df_report = pd.DataFrame(report).transpose()
st.dataframe(df_report )
st.write(f'Accuracy Score........{metrics.accuracy_score(test, pred):.4f}\n\n' \
#f'ROC AUC Score.........{my_ROC_AUC_score:.4f}\n\n' \
f'Weighted f1 score.....{my_Weighted_f1:.4f}\n\n' \
f'Cohen Kappa...........{my_Cohen_Kappa:.4f}\n\n' \
f'Matthews Coefficient..{my_Matthews_coefficient:.4f}\n\n')
my_List = [my_Accuracy_score, my_Weighted_f1, my_Cohen_Kappa, my_Matthews_coefficient]
df_Metrics[my_Name] = my_List
cfm= metrics.confusion_matrix(test, pred)
st.caption(f'Confusion Matrix: {my_Name}')
cmd = metrics.ConfusionMatrixDisplay(cfm,display_labels=labels)
fig, ax = plt.subplots(figsize=(15,15))
ax = cmd.plot(ax=ax,
colorbar=False,
values_format = '.0f',
cmap='Reds')#='tab20')# see color options here https://matplotlib.org/stable/tutorials/colors/colormaps.html
plt.xticks(rotation=90)
st.pyplot(fig)
st.header('Let\'s see how the models performed')
'''
The next part of the code will analyze the full dataset.
Choose all five models to compare them all
'''
##### FORM #####
with st.form("my_form"):
st.write("You can choose from 1 to 5 models")
selected_options = st.multiselect(
'Which models would you like to analyze?', models_run)
submitted = st.form_submit_button("Submit")
if submitted:
st.write('you selected',selected_options)
###Show the metrics for each dataset:
test = df_test['labels']
#for m in models_run:
for m in selected_options:
pred = df_test[m]
show_metrics(test,pred,m)
st.header('Metrics for all models:')
st.table(df_Metrics)
#### GRAPH THE RESULTS ###
import seaborn as sns
# Reshape the dataframe into long format using pd.melt()
#subset_df = pd.melt(df_Metrics[['SwinForImageClassification_24',
#'ViTForImageClassification_22', 'SwinForImageClassification_21', 'ResNetForImageClassification_23', 'BeitForImageClassification_25']].reset_index(), id_vars='index', var_name='Model', value_name='Score')
subset_df = pd.melt(df_Metrics[selected_options].reset_index(), id_vars='index', var_name='Model', value_name='Score')
sns.set_style('whitegrid')
ax=sns.catplot(data=subset_df,
x='index',
y='Score',
hue='Model',
kind='bar',
palette='Blues',
aspect=2)
plt.xlabel('Clusters')
plt.ylabel('Scores')
fig = ax.figure
st.pyplot(fig) |