File size: 9,258 Bytes
850b35f
 
 
 
 
 
fb6ba9d
850b35f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf6eb72
 
 
 
 
 
 
850b35f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4328bde
850b35f
 
 
 
 
 
 
 
 
 
 
 
 
b202a5e
850b35f
ee02c03
850b35f
 
 
 
cf6eb72
4328bde
 
 
faae59d
 
850b35f
 
 
 
 
 
faae59d
850b35f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import requests
import io
from transformers import pipeline
from PIL import Image

#import streamlit as st
#import pandas as pd
#import matplotlib.pyplot as plt



st.title('Playing cards Image Analysis')


#sample slider; feel free to remove:
#x = st.slider('Select a value')
#st.write(x, 'squared is', x * x)

'''
This next piece of code will hit GitHub for two csv files
One is the original dataset, broken up into test, train, valid.
The second csv is the test dataset, with the results after the models were run through the API
'''
# Downloading the csv file from your GitHub account
url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/cards.csv" 
download = requests.get(url).content

# Reading the downloaded content and turning it into a pandas data frame
df = pd.read_csv(io.StringIO(download.decode('utf-8')))
#df = pd.read_csv('playing_cards/cards.csv').sort_values('class index')
df_fulldataset=df

# Downloading the csv file from your GitHub account
url = "https://huggingface.co/datasets/rwcuffney/autotrain-data-pick_a_card/raw/main/ML_results.csv" 
download = requests.get(url).content

# Reading the downloaded content and turning it into a pandas data frame
df = pd.read_csv(io.StringIO(download.decode('utf-8')))
#df = pd.read_csv('playing_cards/cards.csv').sort_values('class index')
df_test = df



# Create the button
if st.button('Click me to re-run code',key='RunCode_button'):
    # Call the function when the button is clicked
    st.experimental_rerun()

st.header('Sample of the .csv data:')
x = st.slider('Select a value',value=10,max_value=8000)
st.table(df_fulldataset.sample(x))

### HORIZONTAL BAR ###

st.header('Distribution of the playing card images:')

# Get the value counts of the 'labels' column
value_counts = df_fulldataset.groupby('labels')['class index'].count().iloc[::-1]


fig, ax = plt.subplots(figsize=(10,10))
    
# Create a bar chart of the value counts
ax = value_counts.plot.barh()
# Set the chart title and axis labels
ax.set_title('Value Counts of Labels')
ax.set_xlabel('Label')
ax.set_ylabel('Count')

# Show the chart
st.pyplot(fig)


### PIE CHART ###

st.header('Balance of Train,Valid,Test datasets:')

# Get the value counts of the 'labels' column
value_counts = df_fulldataset.groupby('data set')['class index'].count().iloc[::-1]

value_counts =df_fulldataset['data set'].value_counts()

fig, ax = plt.subplots(figsize=(5,5)
                      )
# Create a bar chart of the value counts
ax = value_counts.plot.pie(autopct='%1.1f%%')

# Set the chart title and axis labels
# Show the chart
st.pyplot(fig)





models_run= ['SwinForImageClassification_24', 
             'ViTForImageClassification_22',
             'SwinForImageClassification_21', 
             'ResNetForImageClassification_23',
             'BeitForImageClassification_25']


from enum import Enum
 
API_dict = dict(
    SwinForImageClassification_21="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099221",
    ViTForImageClassification_22="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099222",
    ResNetForImageClassification_23= "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099223",
    SwinForImageClassification_24 = "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099224",
    BeitForImageClassification_25="https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099225")

pipeline_dict = dict(
    SwinForImageClassification_21="rwcuffney/autotrain-pick_a_card-3726099221",
    ViTForImageClassification_22="rwcuffney/autotrain-pick_a_card-3726099222",
    ResNetForImageClassification_23= "rwcuffney/autotrain-pick_a_card-3726099223",
    SwinForImageClassification_24 = rwcuffney/autotrain-pick_a_card-3726099224",
    BeitForImageClassification_25="rwcuffney/autotrain-pick_a_card-3726099225")


# printing enum member as string
#print(Api_URL.ViTForImageClassification_22.value)


####Try it out ###
import requests

st.header("Try it out")

'''
Warning: it will error out at first, resubmit a few times.
Each model needs to 'warm up' before they start working.

You can use any image... try test/queen of hearts/4.jpg to see an example that 
Got different results with different models
'''

headers = {"Authorization": "Bearer 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"}
def query(filename,api_url):
    #with open(filename, "rb") as f:
        #data = f.read()
    response = requests.post(api_url, headers=headers, data=filename)
    return response.json()

#API_URL = "https://api-inference.huggingface.co/models/rwcuffney/autotrain-pick_a_card-3726099224"





##### FORM #####

with st.form("api_form"):
    api = st.selectbox('Which model do you want to try?',models_run,key='select_box')




    uploaded_file = st.file_uploader("Choose a file")
    if uploaded_file is not None:
        # To read file as bytes:
        bytes_data = uploaded_file.getvalue()
        #st.write(bytes_data)
        image = Image.open(uploaded_file)


    submitted = st.form_submit_button("Submit")
    if submitted:
        pipeline = pipeline(task="image-classification", model=pipeline_dict[api])
        def predict(image):
            predictions = pipeline(image)
            return {p["label"]: p["score"] for p in predictions}
        prediction = predict(image)
        st.write(prediction)
        #st.write(API_dict[api])
        #output = query(bytes_data,API_dict[api])

        #prediction = output[0]['label']
        #st.write(f'prediction = {prediction}')
        #st.text(output)
        




#### FUNCTIONS ####
import sklearn
from sklearn import metrics
import matplotlib.pyplot as plt

index = ['accuracy_score','Weighted f1', 'Cohen Kappa','Matthews']
df_Metrics =pd.DataFrame(index=index)

labels = df_test['labels'].unique()



### FUNCTION TO SHOW THE METRICS
def show_metrics(test,pred,name):
    from sklearn import metrics
    
    my_Name = name
    my_Accuracy_score=metrics.accuracy_score(test, pred)
    #my_ROC_AUC_score= roc_auc_score(y, model.predict_proba(X), multi_class='ovr')
    my_Weighted_f1= metrics.f1_score(test, pred,average='weighted')
    my_Cohen_Kappa = metrics.cohen_kappa_score(test, pred)
    my_Matthews_coefficient=metrics.matthews_corrcoef(test, pred)
    
    st.header(f'Metrics for {my_Name}:')	
    report =metrics.classification_report(test, pred, output_dict=True)
    df_report = pd.DataFrame(report).transpose()	
    st.dataframe(df_report )
    st.write(f'Accuracy Score........{metrics.accuracy_score(test, pred):.4f}\n\n' \
          #f'ROC AUC Score.........{my_ROC_AUC_score:.4f}\n\n' \
          f'Weighted f1 score.....{my_Weighted_f1:.4f}\n\n' \
          f'Cohen Kappa...........{my_Cohen_Kappa:.4f}\n\n' \
          f'Matthews Coefficient..{my_Matthews_coefficient:.4f}\n\n')
    my_List = [my_Accuracy_score, my_Weighted_f1, my_Cohen_Kappa, my_Matthews_coefficient]

    df_Metrics[my_Name] = my_List
    
    cfm= metrics.confusion_matrix(test, pred)
    st.caption(f'Confusion Matrix: {my_Name}')
    cmd = metrics.ConfusionMatrixDisplay(cfm,display_labels=labels)
    fig, ax = plt.subplots(figsize=(15,15))
    ax = cmd.plot(ax=ax, 
                  colorbar=False,
                  values_format = '.0f',
                  cmap='Reds')#='tab20')# see color options here https://matplotlib.org/stable/tutorials/colors/colormaps.html
    plt.xticks(rotation=90)
    st.pyplot(fig)





st.header('Let\'s see how the models performed')

'''
The next part of the code will analyze the full dataset.
Choose all five models to compare them all

'''


##### FORM #####

with st.form("my_form"):
    st.write("You can choose from 1 to 5 models")


    selected_options = st.multiselect(
    'Which models would you like to analyze?', models_run)

    submitted = st.form_submit_button("Submit")
    if submitted:
        st.write('you selected',selected_options)


    ###Show the metrics for each dataset:
        test = df_test['labels']

        #for m in models_run:
        for m in selected_options:
            pred = df_test[m]
            show_metrics(test,pred,m)

        st.header('Metrics for all models:')
        st.table(df_Metrics)

        #### GRAPH THE RESULTS ###
        import seaborn as sns

        # Reshape the dataframe into long format using pd.melt()
        #subset_df = pd.melt(df_Metrics[['SwinForImageClassification_24', 
        #'ViTForImageClassification_22', 'SwinForImageClassification_21', 'ResNetForImageClassification_23', 'BeitForImageClassification_25']].reset_index(), id_vars='index', var_name='Model', value_name='Score')
        subset_df = pd.melt(df_Metrics[selected_options].reset_index(), id_vars='index', var_name='Model', value_name='Score')

        sns.set_style('whitegrid')
        ax=sns.catplot(data=subset_df, 
                    x='index', 
                    y='Score', 
                    hue='Model', 
                    kind='bar', 
                    palette='Blues', 
                    aspect=2)

        plt.xlabel('Clusters')
        plt.ylabel('Scores')

        fig = ax.figure
        st.pyplot(fig)