Spaces:
Runtime error
Runtime error
File size: 9,350 Bytes
f6b9815 fabbe1e f6b9815 fabbe1e f6b9815 fabbe1e f6b9815 fabbe1e f6b9815 28ad340 f6b9815 66f8fc1 c392e6f 7fa88e5 c392e6f f6b9815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
run_api = False
SSD_1B = False
import os
# Use GPU
gpu_info = os.popen("nvidia-smi").read()
if "failed" in gpu_info:
print("Not connected to a GPU")
is_gpu = False
else:
print(gpu_info)
is_gpu = True
print(is_gpu)
from IPython.display import clear_output
def check_enviroment():
try:
import torch
print("Enviroment is already installed.")
except ImportError:
print("Enviroment not found. Installing...")
# Install requirements from requirements.txt
os.system("pip install -r requirements.txt")
# Install gradio version 3.48.0
os.system("pip install gradio==3.39.0")
# Install python-dotenv
os.system("pip install python-dotenv")
# Clear the output
clear_output()
print("Enviroment installed successfully.")
# Call the function to check and install Packages if necessary
check_enviroment()
from IPython.display import clear_output
import os
import gradio as gr
import numpy as np
import PIL
import base64
import io
import torch
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
# SDXL
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
# Get the current directory
current_dir = os.getcwd()
model_path = os.path.join(current_dir)
# Set the cache path
cache_path = os.path.join(current_dir, "cache")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret")
# Uncomment the following line if you are using PyTorch 1.10 or later
# os.environ["TORCH_USE_CUDA_DSA"] = "1"
if is_gpu:
# Uncomment the following line if you want to enable CUDA launch blocking
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
torch_dtype=torch.float16
variant="fp16"
else:
# Uncomment the following line if you want to use CPU instead of GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch_dtype=torch.float32
variant="fp32"
# Get the current directory
current_dir = os.getcwd()
model_path = os.path.join(current_dir)
# Set the cache path
cache_path = os.path.join(current_dir, "cache")
if not SSD_1B:
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=torch_dtype,
variant=variant,
cache_dir=cache_path,
)
pipe = DiffusionPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-base-1.0",
"stabilityai/sdxl-turbo",
unet=unet,
torch_dtype=torch_dtype,
variant=variant,
cache_dir=cache_path,
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
if torch.cuda.is_available():
pipe.to("cuda")
else:
# SSD-1B
from diffusers import LCMScheduler, AutoPipelineForText2Image
pipe = AutoPipelineForText2Image.from_pretrained(
"segmind/SSD-1B",
torch_dtype=torch.float16,
variant="fp16",
cache_dir=cache_path,
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
if torch.cuda.is_available():
pipe.to("cuda")
# load and fuse
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
pipe.fuse_lora()
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 0.0,
num_inference_steps: int = 4,
secret_token: str = "",
) -> PIL.Image.Image:
if secret_token != SECRET_TOKEN:
raise gr.Error(
f"Invalid secret token. Please fork the original space if you want to use it for yourself."
)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images[0]
return image
clear_output()
from IPython.display import display
def generate_image(prompt="A beautiful and sexy girl"):
# Generate the image using the prompt
generated_image = generate(
prompt=prompt,
negative_prompt="",
seed=0,
width=1024,
height=1024,
guidance_scale=0.0,
num_inference_steps=4,
secret_token="default_secret", # Replace with your secret token
)
# Display the image in the Jupyter Notebook
display(generated_image)
if not run_api:
secret_token = gr.Text(
label="Secret Token",
max_lines=1,
placeholder="Enter your secret token",
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
result = gr.Image(label="Result", show_label=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps", minimum=1, maximum=8, step=1, value=4
)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
secret_token,
]
iface = gr.Interface(
fn=generate,
inputs=inputs,
outputs=result,
title="Image Generator",
description="Generate images based on prompts.",
)
#iface.launch()
iface.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860) # Docker
if run_api:
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
<div style="text-align: center; color: black;">
<p style="color: black;">This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.</p>
<p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p>
</div>
</div>"""
)
secret_token = gr.Text(
label="Secret Token",
max_lines=1,
placeholder="Enter your secret token",
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
result = gr.Image(label="Result", show_label=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps", minimum=1, maximum=8, step=1, value=4
)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
secret_token,
]
prompt.submit(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
# demo.queue(max_size=32).launch()
# Launch the Gradio app with multiple workers and debug mode enabled
# demo.queue(max_size=32).launch(debug=True)# For Standard
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860) # Docker
'''
import gradio as gr
import subprocess
def run_command(command):
try:
result = subprocess.check_output(command, shell=True, text=True)
return result
except subprocess.CalledProcessError as e:
return f"Error: {e}"
iface = gr.Interface(
fn=run_command,
inputs="text",
outputs="text",
#live=True,
title="Command Output Viewer",
description="Enter a command and view its output.",
examples=[
["ls"],
["pwd"],
["echo 'Hello, Gradio!'"],
["python --version"]]
)
iface.launch(server_name="0.0.0.0", server_port=7860)
''' |