Spaces:
Paused
Paused
File size: 13,847 Bytes
a9926fd 7702ee7 6370c41 a9926fd 6370c41 c1fc461 c0408e6 6370c41 a9926fd e0b06cd a9926fd 6370c41 a9926fd e0b06cd a9926fd d354a33 6499e9c 0313db9 a9926fd 6499e9c cf3661e 6499e9c cf3661e 6499e9c a9926fd e0b06cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import os
import multiprocessing
import subprocess
import nltk
import gradio as gr
import matplotlib.pyplot as plt
import gc
from huggingface_hub import snapshot_download
from typing import List
import shutil
import numpy as np
import random
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from diffusers import DiffusionPipeline
from moviepy.editor import VideoFileClip
import moviepy.editor as mpy
from PIL import Image, ImageDraw, ImageFont
from mutagen.mp3 import MP3
from gtts import gTTS
from pydub import AudioSegment
import textwrap
nltk.download('punkt_tab')
# Log GPU Memory (optional, for debugging)
def log_gpu_memory():
"""Log GPU memory usage."""
if torch.cuda.is_available():
print(subprocess.check_output('nvidia-smi').decode('utf-8'))
else:
print("CUDA is not available. Cannot log GPU memory.")
# Check GPU Availability
def check_gpu_availability():
"""Print GPU availability and device details."""
if torch.cuda.is_available():
print(f"CUDA devices: {torch.cuda.device_count()}")
print(f"Current device: {torch.cuda.current_device()}")
print(torch.cuda.get_device_properties(torch.cuda.current_device()))
else:
print("CUDA is not available. Running on CPU.")
check_gpu_availability()
# Initialize FLUX pipeline only if CUDA is available
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
else:
flux_pipe = None # Avoid initializing the model when CUDA is unavailable
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
nltk.download('punkt')
# Ensure proper multiprocessing start method
multiprocessing.set_start_method("spawn", force=True)
# Download necessary NLTK data
def setup_nltk():
"""Ensure required NLTK data is available."""
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Constants
DESCRIPTION = (
"Video Story Generator with Audio\n"
"PS: Generation of video by using Artificial Intelligence via FLUX, distilbart, and GTTS."
)
TITLE = "Video Story Generator with Audio by using FLUX, distilbart, and GTTS."
# Load Tokenizer and Model for Text Summarization
@spaces.GPU()
def load_text_summarization_model():
"""Load the tokenizer and model for text summarization on CPU."""
print("Loading text summarization model...")
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
return tokenizer, model
tokenizer, model = load_text_summarization_model()
@spaces.GPU()
def generate_image_with_flux(
text: str,
seed: int = 42,
width: int = 1024,
height: int = 1024,
num_inference_steps: int = 4,
randomize_seed: bool = True):
"""
Generates an image from text using FLUX.
"""
print(f"DEBUG: Generating image with FLUX for text: '{text}'")
# Use the global flux_pipe (which was already initialized at startup)
global flux_pipe
if flux_pipe is None:
raise RuntimeError("FLUX pipeline not initialized because CUDA is unavailable.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed) # Specify device for generator
image = flux_pipe(
prompt=text,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
print("DEBUG: Image generated successfully.")
return image
# --------- End of MinDalle Functions ---------
# Merge audio files
def merge_audio_files(mp3_names: List[str]) -> str:
"""
Merges a list of MP3 files into a single MP3 file.
Args:
mp3_names: List of paths to MP3 files.
Returns:
Path to the merged MP3 file.
"""
combined = AudioSegment.empty()
for f_name in mp3_names:
audio = AudioSegment.from_mp3(f_name)
combined += audio
export_path = "result.mp3"
combined.export(export_path, format="mp3")
print(f"DEBUG: Audio files merged and saved to {export_path}")
return export_path
# Function to generate video from text
@spaces.GPU()
def get_output_video(text, seed, randomize_seed, width, height, num_inference_steps):
print("DEBUG: Starting get_output_video function...")
# Set the device here, inside the GPU-accelerated function
device = "cuda" if torch.cuda.is_available() else "cpu"
# Move the model to the GPU
model.to(device)
# Summarize the input text
print("DEBUG: Summarizing text...")
inputs = tokenizer(
text,
max_length=1024,
truncation=True,
return_tensors="pt"
).to(device) # Now it's safe to move to the device
summary_ids = model.generate(inputs["input_ids"].to(device)) # .to(device) here
summary = tokenizer.batch_decode(
summary_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
plot = list(summary[0].split('.'))
print(f"DEBUG: Summary generated: {plot}")
image_system ="Generate a realistic picture about this: "
# Generate images for each sentence in the plot
generated_images = []
for i, senten in enumerate(plot[:-1]):
print(f"DEBUG: Generating image {i+1} of {len(plot)-1}...")
image_dir = f"image_{i}"
os.makedirs(image_dir, exist_ok=True)
image = generate_image_with_flux(
text= image_system + senten,
seed=seed,
randomize_seed=randomize_seed,
width=width,
height=height,
num_inference_steps=num_inference_steps
)
generated_images.append(image)
image_path = os.path.join(image_dir, "generated_image.png")
image.save(image_path)
print(f"DEBUG: Image generated and saved to {image_path}")
#del min_dalle_model # No need to delete the model here
#torch.cuda.empty_cache() # No need to empty cache here
#gc.collect() # No need to collect garbage here
# Create subtitles from the plot
sentences = plot[:-1]
print("DEBUG: Creating subtitles...")
assert len(generated_images) == len(sentences), "Mismatch in number of images and sentences."
sub_names = [nltk.tokenize.sent_tokenize(sentence) for sentence in sentences]
# Add subtitles to images with dynamic adjustments
def get_dynamic_wrap_width(font, text, image_width, padding):
# Estimate the number of characters per line dynamically
avg_char_width = sum(font.getbbox(c)[2] for c in text) / len(text)
return max(1, (image_width - padding * 2) // avg_char_width)
def draw_multiple_line_text(image, text, font, text_color, text_start_height, padding=10):
draw = ImageDraw.Draw(image)
image_width, _ = image.size
y_text = text_start_height
lines = textwrap.wrap(text, width=get_dynamic_wrap_width(font, text, image_width, padding))
for line in lines:
line_width, line_height = font.getbbox(line)[2:]
draw.text(((image_width - line_width) / 2, y_text), line, font=font, fill=text_color)
y_text += line_height + padding
def add_text_to_img(text1, image_input):
print(f"DEBUG: Adding text to image: '{text1}'")
# Scale font size dynamically
base_font_size = 30
image_width, image_height = image_input.size
scaled_font_size = max(10, int(base_font_size * (image_width / 800)))
path_font = "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf"
if not os.path.exists(path_font):
path_font = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
font = ImageFont.truetype(path_font, scaled_font_size)
text_color = (255, 255, 0)
padding = 10
# Estimate starting height dynamically
line_height = font.getbbox("A")[3] + padding
total_text_height = len(textwrap.wrap(text1, get_dynamic_wrap_width(font, text1, image_width, padding))) * line_height
text_start_height = image_height - total_text_height - 20
draw_multiple_line_text(image_input, text1, font, text_color, text_start_height, padding)
return image_input
# Process images with subtitles
generated_images_sub = []
for k, image in enumerate(generated_images):
text_to_add = sub_names[k][0]
result = add_text_to_img(text_to_add, image.copy())
generated_images_sub.append(result)
result.save(f"image_{k}/generated_image_with_subtitles.png")
# Generate audio for each subtitle
mp3_names = []
mp3_lengths = []
for k, text_to_add in enumerate(sub_names):
print(f"DEBUG: Generating audio for: '{text_to_add[0]}'")
f_name = f'audio_{k}.mp3'
mp3_names.append(f_name)
myobj = gTTS(text=text_to_add[0], lang='en', slow=False)
myobj.save(f_name)
audio = MP3(f_name)
mp3_lengths.append(audio.info.length)
print(f"DEBUG: Audio duration: {audio.info.length} seconds")
# Merge audio files
export_path = merge_audio_files(mp3_names)
# Create video clips from images
clips = []
for k, img in enumerate(generated_images_sub):
duration = mp3_lengths[k]
print(f"DEBUG: Creating video clip {k+1} with duration: {duration} seconds")
clip = mpy.ImageClip(f"image_{k}/generated_image_with_subtitles.png").set_duration(duration + 0.5)
clips.append(clip)
# Concatenate video clips
print("DEBUG: Concatenating video clips...")
concat_clip = mpy.concatenate_videoclips(clips, method="compose")
concat_clip.write_videofile("result_no_audio.mp4", fps=24, logger=None)
# Combine video and audio
movie_name = 'result_no_audio.mp4'
movie_final = 'result_final.mp4'
def combine_audio(vidname, audname, outname, fps=24):
print(f"DEBUG: Combining audio for video: '{vidname}'")
my_clip = mpy.VideoFileClip(vidname)
audio_background = mpy.AudioFileClip(audname)
final_clip = my_clip.set_audio(audio_background)
final_clip.write_videofile(outname, fps=fps, logger=None)
combine_audio(movie_name, export_path, movie_final)
# Clean up
print("DEBUG: Cleaning up files...")
for i in range(len(generated_images_sub)):
shutil.rmtree(f"image_{i}")
os.remove(f"audio_{i}.mp3")
os.remove("result.mp3")
os.remove("result_no_audio.mp4")
print("DEBUG: Cleanup complete.")
print("DEBUG: get_output_video function completed successfully.")
return 'result_final.mp4'
# Example text (can be changed by user in Gradio interface)
text = 'Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.'
# Create Gradio interface
demo = gr.Blocks()
with demo:
gr.Markdown("# Video Generator from stories with Artificial Intelligence")
gr.Markdown("A story can be input by user. The story is summarized using DistilBART model. Then, the images are generated by using FLUX, and the subtitles and audio are created using gTTS. These are combined to generate a video.")
with gr.Row():
with gr.Column():
input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
with gr.Row():
button_gen_video = gr.Button("Generate Video")
with gr.Column():
#output_interpolation = gr.Video(label="Generated Video")
output_interpolation = gr.Video(value="test.mp4", label="Generated Video") # Set default video
gr.Markdown("<h3>Future Works </h3>")
gr.Markdown("This program is a text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use more advanced image generation models. For more info visit [ruslanmv.com](https://ruslanmv.com/) ")
button_gen_video.click(
fn=get_output_video,
inputs=[input_start_text, seed, randomize_seed, width, height, num_inference_steps],
outputs=output_interpolation
)
# Launch the Gradio app
demo.launch(debug=True, share=False) |