Spaces:
Running
Running
File size: 20,638 Bytes
08d5f37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
from typing import Union
class HighwayNetwork(nn.Module):
def __init__(self, size):
super().__init__()
self.W1 = nn.Linear(size, size)
self.W2 = nn.Linear(size, size)
self.W1.bias.data.fill_(0.)
def forward(self, x):
x1 = self.W1(x)
x2 = self.W2(x)
g = torch.sigmoid(x2)
y = g * F.relu(x1) + (1. - g) * x
return y
class Encoder(nn.Module):
def __init__(self, embed_dims, num_chars, encoder_dims, K, num_highways, dropout):
super().__init__()
prenet_dims = (encoder_dims, encoder_dims)
cbhg_channels = encoder_dims
self.embedding = nn.Embedding(num_chars, embed_dims)
self.pre_net = PreNet(embed_dims, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
dropout=dropout)
self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels,
proj_channels=[cbhg_channels, cbhg_channels],
num_highways=num_highways)
def forward(self, x, speaker_embedding=None):
x = self.embedding(x)
x = self.pre_net(x)
x.transpose_(1, 2)
x = self.cbhg(x)
if speaker_embedding is not None:
x = self.add_speaker_embedding(x, speaker_embedding)
return x
def add_speaker_embedding(self, x, speaker_embedding):
# SV2TTS
# The input x is the encoder output and is a 3D tensor with size (batch_size, num_chars, tts_embed_dims)
# When training, speaker_embedding is also a 2D tensor with size (batch_size, speaker_embedding_size)
# (for inference, speaker_embedding is a 1D tensor with size (speaker_embedding_size))
# This concats the speaker embedding for each char in the encoder output
# Save the dimensions as human-readable names
batch_size = x.size()[0]
num_chars = x.size()[1]
if speaker_embedding.dim() == 1:
idx = 0
else:
idx = 1
# Start by making a copy of each speaker embedding to match the input text length
# The output of this has size (batch_size, num_chars * tts_embed_dims)
speaker_embedding_size = speaker_embedding.size()[idx]
e = speaker_embedding.repeat_interleave(num_chars, dim=idx)
# Reshape it and transpose
e = e.reshape(batch_size, speaker_embedding_size, num_chars)
e = e.transpose(1, 2)
# Concatenate the tiled speaker embedding with the encoder output
x = torch.cat((x, e), 2)
return x
class BatchNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel, relu=True):
super().__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False)
self.bnorm = nn.BatchNorm1d(out_channels)
self.relu = relu
def forward(self, x):
x = self.conv(x)
x = F.relu(x) if self.relu is True else x
return self.bnorm(x)
class CBHG(nn.Module):
def __init__(self, K, in_channels, channels, proj_channels, num_highways):
super().__init__()
# List of all rnns to call `flatten_parameters()` on
self._to_flatten = []
self.bank_kernels = [i for i in range(1, K + 1)]
self.conv1d_bank = nn.ModuleList()
for k in self.bank_kernels:
conv = BatchNormConv(in_channels, channels, k)
self.conv1d_bank.append(conv)
self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)
self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3)
self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False)
# Fix the highway input if necessary
if proj_channels[-1] != channels:
self.highway_mismatch = True
self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False)
else:
self.highway_mismatch = False
self.highways = nn.ModuleList()
for i in range(num_highways):
hn = HighwayNetwork(channels)
self.highways.append(hn)
self.rnn = nn.GRU(channels, channels // 2, batch_first=True, bidirectional=True)
self._to_flatten.append(self.rnn)
# Avoid fragmentation of RNN parameters and associated warning
self._flatten_parameters()
def forward(self, x):
# Although we `_flatten_parameters()` on init, when using DataParallel
# the model gets replicated, making it no longer guaranteed that the
# weights are contiguous in GPU memory. Hence, we must call it again
self._flatten_parameters()
# Save these for later
residual = x
seq_len = x.size(-1)
conv_bank = []
# Convolution Bank
for conv in self.conv1d_bank:
c = conv(x) # Convolution
conv_bank.append(c[:, :, :seq_len])
# Stack along the channel axis
conv_bank = torch.cat(conv_bank, dim=1)
# dump the last padding to fit residual
x = self.maxpool(conv_bank)[:, :, :seq_len]
# Conv1d projections
x = self.conv_project1(x)
x = self.conv_project2(x)
# Residual Connect
x = x + residual
# Through the highways
x = x.transpose(1, 2)
if self.highway_mismatch is True:
x = self.pre_highway(x)
for h in self.highways: x = h(x)
# And then the RNN
x, _ = self.rnn(x)
return x
def _flatten_parameters(self):
"""Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used
to improve efficiency and avoid PyTorch yelling at us."""
[m.flatten_parameters() for m in self._to_flatten]
class PreNet(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=True)
x = self.fc2(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=True)
return x
class Attention(nn.Module):
def __init__(self, attn_dims):
super().__init__()
self.W = nn.Linear(attn_dims, attn_dims, bias=False)
self.v = nn.Linear(attn_dims, 1, bias=False)
def forward(self, encoder_seq_proj, query, t):
# print(encoder_seq_proj.shape)
# Transform the query vector
query_proj = self.W(query).unsqueeze(1)
# Compute the scores
u = self.v(torch.tanh(encoder_seq_proj + query_proj))
scores = F.softmax(u, dim=1)
return scores.transpose(1, 2)
class LSA(nn.Module):
def __init__(self, attn_dim, kernel_size=31, filters=32):
super().__init__()
self.conv = nn.Conv1d(1, filters, padding=(kernel_size - 1) // 2, kernel_size=kernel_size, bias=True)
self.L = nn.Linear(filters, attn_dim, bias=False)
self.W = nn.Linear(attn_dim, attn_dim, bias=True) # Include the attention bias in this term
self.v = nn.Linear(attn_dim, 1, bias=False)
self.cumulative = None
self.attention = None
def init_attention(self, encoder_seq_proj):
device = next(self.parameters()).device # use same device as parameters
b, t, c = encoder_seq_proj.size()
self.cumulative = torch.zeros(b, t, device=device)
self.attention = torch.zeros(b, t, device=device)
def forward(self, encoder_seq_proj, query, t, chars):
if t == 0: self.init_attention(encoder_seq_proj)
processed_query = self.W(query).unsqueeze(1)
location = self.cumulative.unsqueeze(1)
processed_loc = self.L(self.conv(location).transpose(1, 2))
u = self.v(torch.tanh(processed_query + encoder_seq_proj + processed_loc))
u = u.squeeze(-1)
# Mask zero padding chars
u = u * (chars != 0).float()
# Smooth Attention
# scores = torch.sigmoid(u) / torch.sigmoid(u).sum(dim=1, keepdim=True)
scores = F.softmax(u, dim=1)
self.attention = scores
self.cumulative = self.cumulative + self.attention
return scores.unsqueeze(-1).transpose(1, 2)
class Decoder(nn.Module):
# Class variable because its value doesn't change between classes
# yet ought to be scoped by class because its a property of a Decoder
max_r = 20
def __init__(self, n_mels, encoder_dims, decoder_dims, lstm_dims,
dropout, speaker_embedding_size):
super().__init__()
self.register_buffer("r", torch.tensor(1, dtype=torch.int))
self.n_mels = n_mels
prenet_dims = (decoder_dims * 2, decoder_dims * 2)
self.prenet = PreNet(n_mels, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
dropout=dropout)
self.attn_net = LSA(decoder_dims)
self.attn_rnn = nn.GRUCell(encoder_dims + prenet_dims[1] + speaker_embedding_size, decoder_dims)
self.rnn_input = nn.Linear(encoder_dims + decoder_dims + speaker_embedding_size, lstm_dims)
self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims)
self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims)
self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False)
self.stop_proj = nn.Linear(encoder_dims + speaker_embedding_size + lstm_dims, 1)
def zoneout(self, prev, current, p=0.1):
device = next(self.parameters()).device # Use same device as parameters
mask = torch.zeros(prev.size(), device=device).bernoulli_(p)
return prev * mask + current * (1 - mask)
def forward(self, encoder_seq, encoder_seq_proj, prenet_in,
hidden_states, cell_states, context_vec, t, chars):
# Need this for reshaping mels
batch_size = encoder_seq.size(0)
# Unpack the hidden and cell states
attn_hidden, rnn1_hidden, rnn2_hidden = hidden_states
rnn1_cell, rnn2_cell = cell_states
# PreNet for the Attention RNN
prenet_out = self.prenet(prenet_in)
# Compute the Attention RNN hidden state
attn_rnn_in = torch.cat([context_vec, prenet_out], dim=-1)
attn_hidden = self.attn_rnn(attn_rnn_in.squeeze(1), attn_hidden)
# Compute the attention scores
scores = self.attn_net(encoder_seq_proj, attn_hidden, t, chars)
# Dot product to create the context vector
context_vec = scores @ encoder_seq
context_vec = context_vec.squeeze(1)
# Concat Attention RNN output w. Context Vector & project
x = torch.cat([context_vec, attn_hidden], dim=1)
x = self.rnn_input(x)
# Compute first Residual RNN
rnn1_hidden_next, rnn1_cell = self.res_rnn1(x, (rnn1_hidden, rnn1_cell))
if self.training:
rnn1_hidden = self.zoneout(rnn1_hidden, rnn1_hidden_next)
else:
rnn1_hidden = rnn1_hidden_next
x = x + rnn1_hidden
# Compute second Residual RNN
rnn2_hidden_next, rnn2_cell = self.res_rnn2(x, (rnn2_hidden, rnn2_cell))
if self.training:
rnn2_hidden = self.zoneout(rnn2_hidden, rnn2_hidden_next)
else:
rnn2_hidden = rnn2_hidden_next
x = x + rnn2_hidden
# Project Mels
mels = self.mel_proj(x)
mels = mels.view(batch_size, self.n_mels, self.max_r)[:, :, :self.r]
hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
cell_states = (rnn1_cell, rnn2_cell)
# Stop token prediction
s = torch.cat((x, context_vec), dim=1)
s = self.stop_proj(s)
stop_tokens = torch.sigmoid(s)
return mels, scores, hidden_states, cell_states, context_vec, stop_tokens
class Tacotron(nn.Module):
def __init__(self, embed_dims, num_chars, encoder_dims, decoder_dims, n_mels,
fft_bins, postnet_dims, encoder_K, lstm_dims, postnet_K, num_highways,
dropout, stop_threshold, speaker_embedding_size):
super().__init__()
self.n_mels = n_mels
self.lstm_dims = lstm_dims
self.encoder_dims = encoder_dims
self.decoder_dims = decoder_dims
self.speaker_embedding_size = speaker_embedding_size
self.encoder = Encoder(embed_dims, num_chars, encoder_dims,
encoder_K, num_highways, dropout)
self.encoder_proj = nn.Linear(encoder_dims + speaker_embedding_size, decoder_dims, bias=False)
self.decoder = Decoder(n_mels, encoder_dims, decoder_dims, lstm_dims,
dropout, speaker_embedding_size)
self.postnet = CBHG(postnet_K, n_mels, postnet_dims,
[postnet_dims, fft_bins], num_highways)
self.post_proj = nn.Linear(postnet_dims, fft_bins, bias=False)
self.init_model()
self.num_params()
self.register_buffer("step", torch.zeros(1, dtype=torch.long))
self.register_buffer("stop_threshold", torch.tensor(stop_threshold, dtype=torch.float32))
@property
def r(self):
return self.decoder.r.item()
@r.setter
def r(self, value):
self.decoder.r = self.decoder.r.new_tensor(value, requires_grad=False)
def forward(self, x, m, speaker_embedding):
device = next(self.parameters()).device # use same device as parameters
self.step += 1
batch_size, _, steps = m.size()
# Initialise all hidden states and pack into tuple
attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
# Initialise all lstm cell states and pack into tuple
rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
cell_states = (rnn1_cell, rnn2_cell)
# <GO> Frame for start of decoder loop
go_frame = torch.zeros(batch_size, self.n_mels, device=device)
# Need an initial context vector
context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device)
# SV2TTS: Run the encoder with the speaker embedding
# The projection avoids unnecessary matmuls in the decoder loop
encoder_seq = self.encoder(x, speaker_embedding)
encoder_seq_proj = self.encoder_proj(encoder_seq)
# Need a couple of lists for outputs
mel_outputs, attn_scores, stop_outputs = [], [], []
# Run the decoder loop
for t in range(0, steps, self.r):
prenet_in = m[:, :, t - 1] if t > 0 else go_frame
mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
hidden_states, cell_states, context_vec, t, x)
mel_outputs.append(mel_frames)
attn_scores.append(scores)
stop_outputs.extend([stop_tokens] * self.r)
# Concat the mel outputs into sequence
mel_outputs = torch.cat(mel_outputs, dim=2)
# Post-Process for Linear Spectrograms
postnet_out = self.postnet(mel_outputs)
linear = self.post_proj(postnet_out)
linear = linear.transpose(1, 2)
# For easy visualisation
attn_scores = torch.cat(attn_scores, 1)
# attn_scores = attn_scores.cpu().data.numpy()
stop_outputs = torch.cat(stop_outputs, 1)
return mel_outputs, linear, attn_scores, stop_outputs
def generate(self, x, speaker_embedding=None, steps=2000):
self.eval()
device = next(self.parameters()).device # use same device as parameters
batch_size, _ = x.size()
# Need to initialise all hidden states and pack into tuple for tidyness
attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
# Need to initialise all lstm cell states and pack into tuple for tidyness
rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
cell_states = (rnn1_cell, rnn2_cell)
# Need a <GO> Frame for start of decoder loop
go_frame = torch.zeros(batch_size, self.n_mels, device=device)
# Need an initial context vector
context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device)
# SV2TTS: Run the encoder with the speaker embedding
# The projection avoids unnecessary matmuls in the decoder loop
encoder_seq = self.encoder(x, speaker_embedding)
encoder_seq_proj = self.encoder_proj(encoder_seq)
# Need a couple of lists for outputs
mel_outputs, attn_scores, stop_outputs = [], [], []
# Run the decoder loop
for t in range(0, steps, self.r):
prenet_in = mel_outputs[-1][:, :, -1] if t > 0 else go_frame
mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
hidden_states, cell_states, context_vec, t, x)
mel_outputs.append(mel_frames)
attn_scores.append(scores)
stop_outputs.extend([stop_tokens] * self.r)
# Stop the loop when all stop tokens in batch exceed threshold
if (stop_tokens > 0.5).all() and t > 10: break
# Concat the mel outputs into sequence
mel_outputs = torch.cat(mel_outputs, dim=2)
# Post-Process for Linear Spectrograms
postnet_out = self.postnet(mel_outputs)
linear = self.post_proj(postnet_out)
linear = linear.transpose(1, 2)
# For easy visualisation
attn_scores = torch.cat(attn_scores, 1)
stop_outputs = torch.cat(stop_outputs, 1)
self.train()
return mel_outputs, linear, attn_scores
def init_model(self):
for p in self.parameters():
if p.dim() > 1: nn.init.xavier_uniform_(p)
def get_step(self):
return self.step.data.item()
def reset_step(self):
# assignment to parameters or buffers is overloaded, updates internal dict entry
self.step = self.step.data.new_tensor(1)
def log(self, path, msg):
with open(path, "a") as f:
print(msg, file=f)
def load(self, path, optimizer=None):
# Use device of model params as location for loaded state
device = next(self.parameters()).device
checkpoint = torch.load(str(path), map_location=device)
self.load_state_dict(checkpoint["model_state"])
if "optimizer_state" in checkpoint and optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer_state"])
def save(self, path, optimizer=None):
if optimizer is not None:
torch.save({
"model_state": self.state_dict(),
"optimizer_state": optimizer.state_dict(),
}, str(path))
else:
torch.save({
"model_state": self.state_dict(),
}, str(path))
def num_params(self, print_out=True):
parameters = filter(lambda p: p.requires_grad, self.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print("Trainable Parameters: %.3fM" % parameters)
return parameters
|