File size: 5,599 Bytes
6e912a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37958d7
05a809a
37958d7
e142d65
6e912a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f98580a
 
 
 
 
ab52f60
6e912a0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
from gradio_client import Client
import os
import json

# Function to load question sets from a directory
def load_question_sets_vce(directory='questions'):
    question_sets = []
    for root, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith(".json"):
                question_sets.append(os.path.join( file)[:-5])  # remove the .json extension
    return question_sets

exams = load_question_sets_vce('questions/')
print("question_sets:", exams)

def select_exam_vce(exam_name):
    file_path = os.path.join(os.getcwd(), 'questions', f'{exam_name}.json')
    try:
        with open(file_path, 'r') as f:
            questions = json.load(f)
            print(f"Loaded {len(questions)} questions")
            return questions  # Ensure the questions are returned here
    except FileNotFoundError:
        print(f"File {file_path} not found.")
        return []  # Return an empty list to indicate no questions were found


# Text-to-speech function with rate limiting, retry mechanism, and client rotation
import time
import httpx
# Text-to-speech clients 
client_1 = Client("ruslanmv/text-to-speech-fast")
client_2 = Client("ruslanmv/Text-To-Speech")  # Set timeout to 5 seconds
client_3 = Client("ruslanmv/Text-to-Voice-Transformers")
clients = [client_1, client_3,client_2]
# Text-to-speech function with rate limiting, retry mechanism, and client rotation
def text_to_speech(text, retries=3, delay=5):
    client_index = 0  # Start with the first client
    for attempt in range(retries):
        try:
            client = clients[client_index]
            print(f"Attempt {attempt + 1}")
            if client_index == 0:
                result = client.predict(
                    language="English",
                    repo_id="csukuangfj/vits-piper-en_US-hfc_female-medium|1 speaker",
                    text=text,
                    sid="0",
                    speed=0.8,
                    api_name="/process"
                )
            else:
                result = client.predict(
                    text=text,
                    api_name="/predict"
                )
            return result
        except httpx.HTTPStatusError as e:
            if e.response.status_code == 429:
                print(f"Rate limit exceeded. Retrying in {delay} seconds...")
                client_index = (client_index + 1) % len(clients)  # Rotate to the next client
                time.sleep(delay)
            else:
                raise e

    print("Max retries exceeded. Could not process the request.")
    return None
# Function to start exam
def start_exam(exam_choice, audio_enabled):
    global selected_questions
    selected_questions = select_exam_vce(exam_choice)
    question, options, audio_path = display_question(0, audio_enabled)
    return (
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
        gr.update(visible=False),  # Hide the audio_checkbox
        gr.update(visible=True), question, gr.update(choices=options, visible=True), gr.update(visible=True),
        gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), 0, "", audio_path
    )

# Function to display a question
def display_question(index, audio_enabled):
    if index < 0 or index >= len(selected_questions):
        return "No more questions.", [], None
    question_text_ = selected_questions[index]['question']
    question_text = f"**Question {index + 1}:** {question_text_}"  # Numbering added
    choices_options = selected_questions[index]['options']
    audio_path = text_to_speech(question_text_ + " " + " ".join(choices_options)) if audio_enabled else None
    return question_text, choices_options, audio_path

# Function to check the answer
def check_answer(index, answer):
    correct_answer = selected_questions[index]['correct']
    if answer == correct_answer:
        return f"Correct! The answer is: {correct_answer}"
    else:
        return f"Incorrect. The correct answer is: {correct_answer}"

# Function to update the question
def update_question(index, audio_enabled):
    question, options, audio_path = display_question(index, audio_enabled)
    return question, gr.update(choices=options), index, audio_path

# Function to handle the answer submission
def handle_answer(index, answer, audio_enabled):
    result = check_answer(index, answer)
    audio_path = text_to_speech(result) if audio_enabled else None
    return result, audio_path

# Function to handle the next question
def handle_next(index, audio_enabled):
    new_index = min(index + 1, len(selected_questions) - 1)
    question, options, new_index, audio_path = update_question(new_index, audio_enabled)
    return question, options, new_index, "", audio_path

# Function to handle the previous question
def handle_previous(index, audio_enabled):
    new_index = max(index - 1, 0)
    question, options, new_index, audio_path = update_question(new_index, audio_enabled)
    return question, options, new_index, "", audio_path

# Function to return to the home page
def return_home():
    return (
        gr.update(visible=True),
        gr.update(visible=True), 
        gr.update(visible=True),
        gr.update(visible=True),
        gr.update(visible=True), # Show the audio_checkbox
        #gr.update(visible=True), # Show question slider
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
        gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), "", ""
    )