File size: 15,029 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

'''
in contrast to train.py, here we do not only predict keypoints but instead:
    - keypoints
    - segmentation
'''

import torch
import torch.backends.cudnn
import torch.nn.parallel
import torch.nn as nn
from tqdm import tqdm
import os
import pathlib
from matplotlib import pyplot as plt
import numpy as np
import cv2
import pickle as pkl

import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
# from stacked_hourglass.loss import joints_mse_loss
from stacked_hourglass.loss import joints_mse_loss_onKPloc, segmentation_loss
from stacked_hourglass.utils.evaluation import accuracy, AverageMeter, final_preds, get_preds, get_preds_soft
from stacked_hourglass.utils.transforms import fliplr, flip_back
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_image_with_part_segmentation, save_image_with_part_segmentation_from_gt_annotation



def do_training_step(model, optimiser, input, target, meta, data_info, target_weight=None):
    assert model.training, 'model must be in training mode.'
    assert len(input) == len(target), 'input and target must contain the same number of examples.'

    with torch.enable_grad():

        # import pdb; pdb.set_trace()

        # Forward pass and loss calculation.
        # output = model(input)       # this is a list
        '''output = out_dict['out_list']'''
        # dict_keys(['out_list_kp', 'out_list_seg', 'seg_final', 'out_list_partseg', 'partseg_final'])
        out_dict = model(input)    

        # original: loss = sum(joints_mse_loss(o, target, target_weight) for o in output)
        '''loss_kp = sum(joints_mse_loss_onKPloc(o[:, :-2, :, :], target, meta, target_weight) for o in output)
        loss_seg = sum(segmentation_loss(o[:, -2:, :, :], meta) for o in output)'''
        loss_kp = sum(joints_mse_loss_onKPloc(o, target, meta, target_weight) for o in out_dict['out_list_kp'])
        loss_seg = sum(segmentation_loss(o, meta) for o in out_dict['out_list_seg'])
        loss_seg_big = segmentation_loss(out_dict['seg_final'], meta)

        # NEW for body part segmentation

        '''import pdb; pdb.set_trace()
        for ind_gt in range(6, 12):
            out_path_gt_seg = '/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/debugging_output/partseg/gt_' + str(ind_gt) + '.png'
            save_image_with_part_segmentation_from_gt_annotation(meta['body_part_matrix'].detach().cpu().numpy(), out_path_gt_seg, ind_gt)'''


        # for the second stage where we add a dataset with body part segmentations
        #   and not just fake -1 labels, we calculate body part segmentation loss as well
        # if all body part labels are -1, we ignore this loss calculation
        if meta['body_part_matrix'].max() > -1:     # this will be the case for dogsvoc but not stanext 
            tbp_dict = {'full_body': [0, 8], 
                        'head': [8, 13], 
                        'torso': [13, 15]}
            loss_partseg = []
            criterion_ce = nn.CrossEntropyLoss(reduction='mean', ignore_index=-1)
            ''''weights = [5.0, 1.0, 1.0, 1.0, 1.0]
            class_weights = torch.FloatTensor(weights).to(input.device)
            criterion_ce_weighted = nn.CrossEntropyLoss(reduction='mean', ignore_index=-1, weight=class_weights)
            for ind_tbp, part in enumerate(['full_body', 'head', 'torso']):
                tbp_out = out_dict['partseg_final'][:, tbp_dict[part][0]:tbp_dict[part][1], :, :]
                tbp_target = meta['body_part_matrix'][:, ind_tbp, :, :].to(torch.long)
                if part == 'head':
                    loss_partseg.append(criterion_ce_weighted(tbp_out, tbp_target))
                else:
                    loss_partseg.append(criterion_ce(tbp_out, tbp_target))'''
            for ind_tbp, part in enumerate(['full_body', 'head', 'torso']):
                tbp_out = out_dict['partseg_final'][:, tbp_dict[part][0]:tbp_dict[part][1], :, :]
                tbp_target = meta['body_part_matrix'][:, ind_tbp, :, :].to(torch.long)
                if part == 'full_body':
                    # ignore parts of the silhouette which dont have a specific body part label
                    tbp_target[tbp_target==0] = -1  
                    loss_partseg.append(criterion_ce(tbp_out, tbp_target))
                else:
                    loss_partseg.append(criterion_ce(tbp_out, tbp_target))
            # print(loss_seg_big)
            # print(loss_partseg)

            # loss = loss_kp + loss_seg*0.01 + loss_seg_big*0.1       # orig     # 0.001       # 0.01
            loss = loss_kp + loss_seg*0.001 + loss_seg_big*0.01 + 0.01*(loss_partseg[0] + loss_partseg[1] + loss_partseg[2])

        else:
            loss = loss_kp + loss_seg*0.01 + loss_seg_big*0.1




        # Backward pass and parameter update.
        optimiser.zero_grad()
        loss.backward()
        optimiser.step()

        loss_dict = {'loss': loss.item(),
                    'keyp': loss_kp.item(),
                    'seg': loss_seg.item(),
                    'seg_big': loss_seg_big.item()
                    }

    return out_dict['out_list_kp'][-1], loss_dict


def do_training_epoch(train_loader, model, device, data_info, optimiser, quiet=False, acc_joints=None):
    losses = AverageMeter()
    accuracies = AverageMeter()

    # Put the model in training mode.
    model.train()

    iterable = enumerate(train_loader)
    progress = None
    if not quiet:
        progress = tqdm(iterable, desc='Train', total=len(train_loader), ascii=True, leave=False)
        iterable = progress

    for i, (input, target, meta) in iterable:
        input, target = input.to(device), target.to(device, non_blocking=True)
        target_weight = meta['target_weight'].to(device, non_blocking=True)
        meta['silh'] = meta['silh'].to(device, non_blocking=True)
        meta['body_part_matrix'] = meta['body_part_matrix'].to(device, non_blocking=True)

        output_kp, loss_dict = do_training_step(model, optimiser, input, target, meta, data_info, target_weight)
        loss = loss_dict['loss']

        acc = accuracy(output_kp, target, acc_joints)

        # measure accuracy and record loss
        losses.update(loss, input.size(0))
        accuracies.update(acc[0], input.size(0))

        # Show accuracy and loss as part of the progress bar.
        if progress is not None:
            progress.set_postfix_str('Loss: {loss:0.4f}, Acc: {acc:6.2f}'.format(
                loss=losses.avg,
                acc=100 * accuracies.avg
            ))

    return losses.avg, accuracies.avg


def do_validation_step(model, input, target, meta, data_info, target_weight=None, flip=False):
    assert not model.training, 'model must be in evaluation mode.'
    assert len(input) == len(target), 'input and target must contain the same number of examples.'

    # Forward pass and loss calculation.
    # output = model(input)
    out_dict = model(input)     # ['out_list', 'seg_final']
    '''output = out_dict['out_list']'''

    # original: loss = sum(joints_mse_loss(o, target, target_weight) for o in output)
    '''loss_kp = sum(joints_mse_loss_onKPloc(o[:, :-2, :, :], target, meta, target_weight) for o in output)
    loss_seg = sum(segmentation_loss(o[:, -2:, :, :], meta) for o in output)'''
    loss_kp = sum(joints_mse_loss_onKPloc(o, target, meta, target_weight) for o in out_dict['out_list_kp'])
    loss_seg = sum(segmentation_loss(o, meta) for o in out_dict['out_list_seg'])
    loss_seg_big = segmentation_loss(out_dict['seg_final'], meta)
    loss = loss_kp + loss_seg*0.01 + loss_seg_big*0.1            # 0.001       # 0.01

    # Get the heatmaps.
    heatmaps = out_dict['out_list_kp'][-1].cpu()

    '''seg = output[-1][:, -2:, :, :].cpu()'''
    seg = out_dict['out_list_seg'][-1].cpu()
    seg_big = out_dict['seg_final'].cpu()
    partseg_big = out_dict['partseg_final'].cpu()

    loss_dict = {'loss': loss.item(),
                'keyp': loss_kp.item(),
                'seg': loss_seg.item(),
                'seg_big': loss_seg_big.item()
                }

    return heatmaps, seg, seg_big, partseg_big, loss_dict      # loss.item()


def do_validation_epoch(val_loader, model, device, data_info, flip=False, quiet=False, acc_joints=None, save_imgs_path=None, save_pkl_path=None):
    losses = AverageMeter()
    accuracies = AverageMeter()
    predictions = [None] * len(val_loader.dataset)

    if save_imgs_path is not None:
        pathlib.Path(save_imgs_path).mkdir(parents=True, exist_ok=True) 

    # Put the model in evaluation mode.
    model.eval()

    iterable = enumerate(val_loader)
    progress = None
    if not quiet:
        progress = tqdm(iterable, desc='Valid', total=len(val_loader), ascii=True, leave=False)
        iterable = progress

    for i, (input, target, meta) in iterable:
        # Copy data to the training device (eg GPU).
        input = input.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)
        target_weight = meta['target_weight'].to(device, non_blocking=True)
        meta['silh'] = meta['silh'].to(device, non_blocking=True)
        if 'body_part_matrix' in meta.keys():
            meta['body_part_matrix'] = meta['body_part_matrix'].to(device, non_blocking=True)

        heatmaps, seg, seg_big, partseg_big, loss_dict = do_validation_step(model, input, target, meta, data_info, target_weight, flip)
        loss = loss_dict['loss']

        # Calculate PCK from the predicted heatmaps.
        acc = accuracy(heatmaps, target.cpu(), acc_joints)

        # Calculate locations in original image space from the predicted heatmaps.
        preds = final_preds(heatmaps, meta['center'], meta['scale'], [64, 64])
        # NEW for visualization: (and redundant, but for visualization)
        if (save_imgs_path is not None) or (save_pkl_path is not None):
            preds_unprocessed, preds_unprocessed_norm, preds_unprocessed_maxval = get_preds_soft(heatmaps, return_maxval=True, norm_and_unnorm_coords=True)

            # import pdb; pdb.set_trace()


        ind = 0
        for example_index, pose in zip(meta['index'], preds):
            # prepare save paths
            if save_pkl_path is not None:
                out_name_seg_overlay = os.path.join(save_imgs_path, meta['name'][ind].replace('.jpg', '__') + 'seg_overlay.png')
                out_name_kp = os.path.join(save_imgs_path, meta['name'][ind].replace('.jpg', '__') + 'res.png')
                if not os.path.exists(os.path.dirname(out_name_kp)):
                    os.makedirs(os.path.dirname(out_name_kp))
                out_name_pkl = os.path.join(save_pkl_path, meta['name'][ind].replace('.jpg', '.pkl'))
                if not os.path.exists(os.path.dirname(out_name_pkl)):
                    os.makedirs(os.path.dirname(out_name_pkl))
            else:
                if save_imgs_path is not None:
                    out_name_seg_overlay = os.path.join(save_imgs_path, 'seg_overlay_' + str( example_index.item()) + '.png')
                    out_name_kp = os.path.join(save_imgs_path, 'res_' + str( example_index.item()) + '.png')
            predictions[example_index] = pose
            # NEW for visualization
            if save_imgs_path is not None:
                soft_max = torch.nn.Softmax(dim= 0)
                segm_img_pred = soft_max((seg_big[ind, :, :, :]))[1, :, :]
                if save_pkl_path is None:
                    # save segmentation image
                    out_name_seg = os.path.join(save_imgs_path, 'seg_' + str( example_index.item()) + '.png')
                    segm_img_pred_small = soft_max((seg[ind, :, :, :]))[1, :, :]
                    plt.imsave(out_name_seg, segm_img_pred_small)
                    # save segmentation image
                    out_name_seg = os.path.join(save_imgs_path, 'seg_big_' + str( example_index.item()) + '.png')
                    plt.imsave(out_name_seg, segm_img_pred)
                # segmentation overlay
                input_image = input[ind, :, :, :].detach().clone()
                for t, m, s in zip(input_image, data_info.rgb_mean, data_info.rgb_stddev): t.add_(m)
                input_image_np = input_image.detach().cpu().numpy().transpose(1, 2, 0) 
                thr = 0.3
                segm_img_pred[segm_img_pred>thr] = 1
                segm_img_pred_3 = np.stack([segm_img_pred, np.zeros((256, 256), dtype=np.float32), np.zeros((256, 256), dtype=np.float32)], axis=2)
                segm_img_pred_3[segm_img_pred<thr] = input_image_np[segm_img_pred<thr]
                im_masked = cv2.addWeighted(input_image_np,0.5,segm_img_pred_3,0.5,0)
                plt.imsave(out_name_seg_overlay, im_masked)
                # save keypoint image
                pred_unp = preds_unprocessed[ind, :, :]
                pred_unp_maxval = preds_unprocessed_maxval[ind, :, :]
                pred_unp_prep = torch.cat((pred_unp, pred_unp_maxval), 1)
                inp_img = input[ind, :, :, :]
                save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_name_kp, threshold=0.1, print_scores=True)    # threshold=0.3

                # NEW: save body part segmentation image:
                out_path_seg = os.path.join(save_imgs_path, 'partseg_overlay_' + str( example_index.item()) + '.png')
                out_path_seg_overlay = os.path.join(save_imgs_path, 'partseg_overlay2_' + str( example_index.item()) + '.png')
                save_image_with_part_segmentation(partseg_big, seg_big, input_image_np, ind, out_path_seg, out_path_seg_overlay, thr=thr)

                # save pkl with results
                if save_pkl_path is not None:
                    result_dict = {'keypoints_normalized': preds_unprocessed_norm[ind, :, :],
                                    'keypoints_scores': preds_unprocessed_maxval[ind, :, :],
                                    'segmentation_fg': soft_max((seg_big[ind, :, :, :]))[1, :, :],
                                    'augmentation_corrected': False,
                                    'center': meta['center'],
                                    'scale': meta['scale'],
                                    'resolution': meta['resolution'],
                                    'do_flip': meta['do_flip'],
                                    'rot': meta['rot']}
                    with open(out_name_pkl, 'wb') as handle:
                        pkl.dump(result_dict, handle, protocol=pkl.HIGHEST_PROTOCOL)
            ind += 1

        # Record accuracy and loss for this batch.
        losses.update(loss, input.size(0))
        accuracies.update(acc[0].item(), input.size(0))

        # Show accuracy and loss as part of the progress bar.
        if progress is not None:
            progress.set_postfix_str('Loss: {loss:0.4f}, Acc: {acc:6.2f}'.format(
                loss=losses.avg,
                acc=100 * accuracies.avg
            ))

    predictions = torch.stack(predictions, dim=0)

    return losses.avg, accuracies.avg, predictions