Spaces:
Runtime error
Runtime error
File size: 15,029 Bytes
753fd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
'''
in contrast to train.py, here we do not only predict keypoints but instead:
- keypoints
- segmentation
'''
import torch
import torch.backends.cudnn
import torch.nn.parallel
import torch.nn as nn
from tqdm import tqdm
import os
import pathlib
from matplotlib import pyplot as plt
import numpy as np
import cv2
import pickle as pkl
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
# from stacked_hourglass.loss import joints_mse_loss
from stacked_hourglass.loss import joints_mse_loss_onKPloc, segmentation_loss
from stacked_hourglass.utils.evaluation import accuracy, AverageMeter, final_preds, get_preds, get_preds_soft
from stacked_hourglass.utils.transforms import fliplr, flip_back
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_image_with_part_segmentation, save_image_with_part_segmentation_from_gt_annotation
def do_training_step(model, optimiser, input, target, meta, data_info, target_weight=None):
assert model.training, 'model must be in training mode.'
assert len(input) == len(target), 'input and target must contain the same number of examples.'
with torch.enable_grad():
# import pdb; pdb.set_trace()
# Forward pass and loss calculation.
# output = model(input) # this is a list
'''output = out_dict['out_list']'''
# dict_keys(['out_list_kp', 'out_list_seg', 'seg_final', 'out_list_partseg', 'partseg_final'])
out_dict = model(input)
# original: loss = sum(joints_mse_loss(o, target, target_weight) for o in output)
'''loss_kp = sum(joints_mse_loss_onKPloc(o[:, :-2, :, :], target, meta, target_weight) for o in output)
loss_seg = sum(segmentation_loss(o[:, -2:, :, :], meta) for o in output)'''
loss_kp = sum(joints_mse_loss_onKPloc(o, target, meta, target_weight) for o in out_dict['out_list_kp'])
loss_seg = sum(segmentation_loss(o, meta) for o in out_dict['out_list_seg'])
loss_seg_big = segmentation_loss(out_dict['seg_final'], meta)
# NEW for body part segmentation
'''import pdb; pdb.set_trace()
for ind_gt in range(6, 12):
out_path_gt_seg = '/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/debugging_output/partseg/gt_' + str(ind_gt) + '.png'
save_image_with_part_segmentation_from_gt_annotation(meta['body_part_matrix'].detach().cpu().numpy(), out_path_gt_seg, ind_gt)'''
# for the second stage where we add a dataset with body part segmentations
# and not just fake -1 labels, we calculate body part segmentation loss as well
# if all body part labels are -1, we ignore this loss calculation
if meta['body_part_matrix'].max() > -1: # this will be the case for dogsvoc but not stanext
tbp_dict = {'full_body': [0, 8],
'head': [8, 13],
'torso': [13, 15]}
loss_partseg = []
criterion_ce = nn.CrossEntropyLoss(reduction='mean', ignore_index=-1)
''''weights = [5.0, 1.0, 1.0, 1.0, 1.0]
class_weights = torch.FloatTensor(weights).to(input.device)
criterion_ce_weighted = nn.CrossEntropyLoss(reduction='mean', ignore_index=-1, weight=class_weights)
for ind_tbp, part in enumerate(['full_body', 'head', 'torso']):
tbp_out = out_dict['partseg_final'][:, tbp_dict[part][0]:tbp_dict[part][1], :, :]
tbp_target = meta['body_part_matrix'][:, ind_tbp, :, :].to(torch.long)
if part == 'head':
loss_partseg.append(criterion_ce_weighted(tbp_out, tbp_target))
else:
loss_partseg.append(criterion_ce(tbp_out, tbp_target))'''
for ind_tbp, part in enumerate(['full_body', 'head', 'torso']):
tbp_out = out_dict['partseg_final'][:, tbp_dict[part][0]:tbp_dict[part][1], :, :]
tbp_target = meta['body_part_matrix'][:, ind_tbp, :, :].to(torch.long)
if part == 'full_body':
# ignore parts of the silhouette which dont have a specific body part label
tbp_target[tbp_target==0] = -1
loss_partseg.append(criterion_ce(tbp_out, tbp_target))
else:
loss_partseg.append(criterion_ce(tbp_out, tbp_target))
# print(loss_seg_big)
# print(loss_partseg)
# loss = loss_kp + loss_seg*0.01 + loss_seg_big*0.1 # orig # 0.001 # 0.01
loss = loss_kp + loss_seg*0.001 + loss_seg_big*0.01 + 0.01*(loss_partseg[0] + loss_partseg[1] + loss_partseg[2])
else:
loss = loss_kp + loss_seg*0.01 + loss_seg_big*0.1
# Backward pass and parameter update.
optimiser.zero_grad()
loss.backward()
optimiser.step()
loss_dict = {'loss': loss.item(),
'keyp': loss_kp.item(),
'seg': loss_seg.item(),
'seg_big': loss_seg_big.item()
}
return out_dict['out_list_kp'][-1], loss_dict
def do_training_epoch(train_loader, model, device, data_info, optimiser, quiet=False, acc_joints=None):
losses = AverageMeter()
accuracies = AverageMeter()
# Put the model in training mode.
model.train()
iterable = enumerate(train_loader)
progress = None
if not quiet:
progress = tqdm(iterable, desc='Train', total=len(train_loader), ascii=True, leave=False)
iterable = progress
for i, (input, target, meta) in iterable:
input, target = input.to(device), target.to(device, non_blocking=True)
target_weight = meta['target_weight'].to(device, non_blocking=True)
meta['silh'] = meta['silh'].to(device, non_blocking=True)
meta['body_part_matrix'] = meta['body_part_matrix'].to(device, non_blocking=True)
output_kp, loss_dict = do_training_step(model, optimiser, input, target, meta, data_info, target_weight)
loss = loss_dict['loss']
acc = accuracy(output_kp, target, acc_joints)
# measure accuracy and record loss
losses.update(loss, input.size(0))
accuracies.update(acc[0], input.size(0))
# Show accuracy and loss as part of the progress bar.
if progress is not None:
progress.set_postfix_str('Loss: {loss:0.4f}, Acc: {acc:6.2f}'.format(
loss=losses.avg,
acc=100 * accuracies.avg
))
return losses.avg, accuracies.avg
def do_validation_step(model, input, target, meta, data_info, target_weight=None, flip=False):
assert not model.training, 'model must be in evaluation mode.'
assert len(input) == len(target), 'input and target must contain the same number of examples.'
# Forward pass and loss calculation.
# output = model(input)
out_dict = model(input) # ['out_list', 'seg_final']
'''output = out_dict['out_list']'''
# original: loss = sum(joints_mse_loss(o, target, target_weight) for o in output)
'''loss_kp = sum(joints_mse_loss_onKPloc(o[:, :-2, :, :], target, meta, target_weight) for o in output)
loss_seg = sum(segmentation_loss(o[:, -2:, :, :], meta) for o in output)'''
loss_kp = sum(joints_mse_loss_onKPloc(o, target, meta, target_weight) for o in out_dict['out_list_kp'])
loss_seg = sum(segmentation_loss(o, meta) for o in out_dict['out_list_seg'])
loss_seg_big = segmentation_loss(out_dict['seg_final'], meta)
loss = loss_kp + loss_seg*0.01 + loss_seg_big*0.1 # 0.001 # 0.01
# Get the heatmaps.
heatmaps = out_dict['out_list_kp'][-1].cpu()
'''seg = output[-1][:, -2:, :, :].cpu()'''
seg = out_dict['out_list_seg'][-1].cpu()
seg_big = out_dict['seg_final'].cpu()
partseg_big = out_dict['partseg_final'].cpu()
loss_dict = {'loss': loss.item(),
'keyp': loss_kp.item(),
'seg': loss_seg.item(),
'seg_big': loss_seg_big.item()
}
return heatmaps, seg, seg_big, partseg_big, loss_dict # loss.item()
def do_validation_epoch(val_loader, model, device, data_info, flip=False, quiet=False, acc_joints=None, save_imgs_path=None, save_pkl_path=None):
losses = AverageMeter()
accuracies = AverageMeter()
predictions = [None] * len(val_loader.dataset)
if save_imgs_path is not None:
pathlib.Path(save_imgs_path).mkdir(parents=True, exist_ok=True)
# Put the model in evaluation mode.
model.eval()
iterable = enumerate(val_loader)
progress = None
if not quiet:
progress = tqdm(iterable, desc='Valid', total=len(val_loader), ascii=True, leave=False)
iterable = progress
for i, (input, target, meta) in iterable:
# Copy data to the training device (eg GPU).
input = input.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
target_weight = meta['target_weight'].to(device, non_blocking=True)
meta['silh'] = meta['silh'].to(device, non_blocking=True)
if 'body_part_matrix' in meta.keys():
meta['body_part_matrix'] = meta['body_part_matrix'].to(device, non_blocking=True)
heatmaps, seg, seg_big, partseg_big, loss_dict = do_validation_step(model, input, target, meta, data_info, target_weight, flip)
loss = loss_dict['loss']
# Calculate PCK from the predicted heatmaps.
acc = accuracy(heatmaps, target.cpu(), acc_joints)
# Calculate locations in original image space from the predicted heatmaps.
preds = final_preds(heatmaps, meta['center'], meta['scale'], [64, 64])
# NEW for visualization: (and redundant, but for visualization)
if (save_imgs_path is not None) or (save_pkl_path is not None):
preds_unprocessed, preds_unprocessed_norm, preds_unprocessed_maxval = get_preds_soft(heatmaps, return_maxval=True, norm_and_unnorm_coords=True)
# import pdb; pdb.set_trace()
ind = 0
for example_index, pose in zip(meta['index'], preds):
# prepare save paths
if save_pkl_path is not None:
out_name_seg_overlay = os.path.join(save_imgs_path, meta['name'][ind].replace('.jpg', '__') + 'seg_overlay.png')
out_name_kp = os.path.join(save_imgs_path, meta['name'][ind].replace('.jpg', '__') + 'res.png')
if not os.path.exists(os.path.dirname(out_name_kp)):
os.makedirs(os.path.dirname(out_name_kp))
out_name_pkl = os.path.join(save_pkl_path, meta['name'][ind].replace('.jpg', '.pkl'))
if not os.path.exists(os.path.dirname(out_name_pkl)):
os.makedirs(os.path.dirname(out_name_pkl))
else:
if save_imgs_path is not None:
out_name_seg_overlay = os.path.join(save_imgs_path, 'seg_overlay_' + str( example_index.item()) + '.png')
out_name_kp = os.path.join(save_imgs_path, 'res_' + str( example_index.item()) + '.png')
predictions[example_index] = pose
# NEW for visualization
if save_imgs_path is not None:
soft_max = torch.nn.Softmax(dim= 0)
segm_img_pred = soft_max((seg_big[ind, :, :, :]))[1, :, :]
if save_pkl_path is None:
# save segmentation image
out_name_seg = os.path.join(save_imgs_path, 'seg_' + str( example_index.item()) + '.png')
segm_img_pred_small = soft_max((seg[ind, :, :, :]))[1, :, :]
plt.imsave(out_name_seg, segm_img_pred_small)
# save segmentation image
out_name_seg = os.path.join(save_imgs_path, 'seg_big_' + str( example_index.item()) + '.png')
plt.imsave(out_name_seg, segm_img_pred)
# segmentation overlay
input_image = input[ind, :, :, :].detach().clone()
for t, m, s in zip(input_image, data_info.rgb_mean, data_info.rgb_stddev): t.add_(m)
input_image_np = input_image.detach().cpu().numpy().transpose(1, 2, 0)
thr = 0.3
segm_img_pred[segm_img_pred>thr] = 1
segm_img_pred_3 = np.stack([segm_img_pred, np.zeros((256, 256), dtype=np.float32), np.zeros((256, 256), dtype=np.float32)], axis=2)
segm_img_pred_3[segm_img_pred<thr] = input_image_np[segm_img_pred<thr]
im_masked = cv2.addWeighted(input_image_np,0.5,segm_img_pred_3,0.5,0)
plt.imsave(out_name_seg_overlay, im_masked)
# save keypoint image
pred_unp = preds_unprocessed[ind, :, :]
pred_unp_maxval = preds_unprocessed_maxval[ind, :, :]
pred_unp_prep = torch.cat((pred_unp, pred_unp_maxval), 1)
inp_img = input[ind, :, :, :]
save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_name_kp, threshold=0.1, print_scores=True) # threshold=0.3
# NEW: save body part segmentation image:
out_path_seg = os.path.join(save_imgs_path, 'partseg_overlay_' + str( example_index.item()) + '.png')
out_path_seg_overlay = os.path.join(save_imgs_path, 'partseg_overlay2_' + str( example_index.item()) + '.png')
save_image_with_part_segmentation(partseg_big, seg_big, input_image_np, ind, out_path_seg, out_path_seg_overlay, thr=thr)
# save pkl with results
if save_pkl_path is not None:
result_dict = {'keypoints_normalized': preds_unprocessed_norm[ind, :, :],
'keypoints_scores': preds_unprocessed_maxval[ind, :, :],
'segmentation_fg': soft_max((seg_big[ind, :, :, :]))[1, :, :],
'augmentation_corrected': False,
'center': meta['center'],
'scale': meta['scale'],
'resolution': meta['resolution'],
'do_flip': meta['do_flip'],
'rot': meta['rot']}
with open(out_name_pkl, 'wb') as handle:
pkl.dump(result_dict, handle, protocol=pkl.HIGHEST_PROTOCOL)
ind += 1
# Record accuracy and loss for this batch.
losses.update(loss, input.size(0))
accuracies.update(acc[0].item(), input.size(0))
# Show accuracy and loss as part of the progress bar.
if progress is not None:
progress.set_postfix_str('Loss: {loss:0.4f}, Acc: {acc:6.2f}'.format(
loss=losses.avg,
acc=100 * accuracies.avg
))
predictions = torch.stack(predictions, dim=0)
return losses.avg, accuracies.avg, predictions
|