File size: 9,625 Bytes
753fd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

# scripts/train.py --workers 12 --checkpoint project22_no3dcgloss_smaldogsilvia_v0 --loss-weight-path barc_loss_weights_no3dcgloss.json --config barc_cfg_train.yaml start --model-file-hg hg_ksp_fromnewanipose_stanext_v0/checkpoint.pth.tar --model-file-3d barc_normflow_pret/checkpoint.pth.tar

import torch
import torch.backends.cudnn
import torch.nn.parallel
from tqdm import tqdm
import os
import json
import pathlib

import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../', 'src'))
# from stacked_hourglass.loss import joints_mse_loss
from stacked_hourglass.loss import joints_mse_loss_onKPloc
from stacked_hourglass.utils.evaluation import accuracy, AverageMeter, final_preds, get_preds, get_preds_soft
from stacked_hourglass.utils.transforms import fliplr, flip_back
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints


def do_training_step(model, optimiser, input, target, meta, data_info, target_weight=None):
    assert model.training, 'model must be in training mode.'
    assert len(input) == len(target), 'input and target must contain the same number of examples.'

    with torch.enable_grad():
        # Forward pass and loss calculation.
        output = model(input)

        # original: loss = sum(joints_mse_loss(o, target, target_weight) for o in output)
        # NEW: 
        loss = sum(joints_mse_loss_onKPloc(o, target, meta, target_weight) for o in output)

        # Backward pass and parameter update.
        optimiser.zero_grad()
        loss.backward()
        optimiser.step()

    return output[-1], loss.item()


def do_training_epoch(train_loader, model, device, data_info, optimiser, quiet=False, acc_joints=None):
    losses = AverageMeter()
    accuracies = AverageMeter()

    # Put the model in training mode.
    model.train()

    iterable = enumerate(train_loader)
    progress = None
    if not quiet:
        progress = tqdm(iterable, desc='Train', total=len(train_loader), ascii=True, leave=False)
        iterable = progress

    for i, (input, target, meta) in iterable:
        input, target = input.to(device), target.to(device, non_blocking=True)
        target_weight = meta['target_weight'].to(device, non_blocking=True)

        output, loss = do_training_step(model, optimiser, input, target, meta, data_info, target_weight)

        acc = accuracy(output, target, acc_joints)

        # measure accuracy and record loss
        losses.update(loss, input.size(0))
        accuracies.update(acc[0], input.size(0))

        # Show accuracy and loss as part of the progress bar.
        if progress is not None:
            progress.set_postfix_str('Loss: {loss:0.4f}, Acc: {acc:6.2f}'.format(
                loss=losses.avg,
                acc=100 * accuracies.avg
            ))

    return losses.avg, accuracies.avg


def do_validation_step(model, input, target, meta, data_info, target_weight=None, flip=False):
    # assert not model.training, 'model must be in evaluation mode.'
    assert len(input) == len(target), 'input and target must contain the same number of examples.'

    # Forward pass and loss calculation.
    output = model(input)

    # original: loss = sum(joints_mse_loss(o, target, target_weight) for o in output)
    # NEW: 
    loss = sum(joints_mse_loss_onKPloc(o, target, meta, target_weight) for o in output)


    # Get the heatmaps.
    if flip:
        # If `flip` is true, perform horizontally flipped inference as well. This should
        # result in more robust predictions at the expense of additional compute.
        flip_input = fliplr(input)
        flip_output = model(flip_input)
        flip_output = flip_output[-1].cpu()
        flip_output = flip_back(flip_output.detach(), data_info.hflip_indices)
        heatmaps = (output[-1].cpu() + flip_output) / 2
    else:
        heatmaps = output[-1].cpu()


    return heatmaps, loss.item()


def do_validation_epoch(val_loader, model, device, data_info, flip=False, quiet=False, acc_joints=None, save_imgs_path=None):
    losses = AverageMeter()
    accuracies = AverageMeter()
    predictions = [None] * len(val_loader.dataset)

    if save_imgs_path is not None:
        pathlib.Path(save_imgs_path).mkdir(parents=True, exist_ok=True) 

    # Put the model in evaluation mode.
    model.eval()

    iterable = enumerate(val_loader)
    progress = None
    if not quiet:
        progress = tqdm(iterable, desc='Valid', total=len(val_loader), ascii=True, leave=False)
        iterable = progress

    for i, (input, target, meta) in iterable:
        # Copy data to the training device (eg GPU).
        input = input.to(device, non_blocking=True)
        target = target.to(device, non_blocking=True)
        target_weight = meta['target_weight'].to(device, non_blocking=True)

        # import pdb; pdb.set_trace()

        heatmaps, loss = do_validation_step(model, input, target, meta, data_info, target_weight, flip)

        # Calculate PCK from the predicted heatmaps.
        acc = accuracy(heatmaps, target.cpu(), acc_joints)

        # Calculate locations in original image space from the predicted heatmaps.
        preds = final_preds(heatmaps, meta['center'], meta['scale'], [64, 64])
        # NEW for visualization: (and redundant, but for visualization)
        preds_unprocessed, preds_unprocessed_maxval = get_preds_soft(heatmaps, return_maxval=True)
        # preds_unprocessed, preds_unprocessed_norm, preds_unprocessed_maxval = get_preds_soft(heatmaps, return_maxval=True, norm_and_unnorm_coords=True)


        # import pdb; pdb.set_trace()

        ind = 0
        for example_index, pose in zip(meta['index'], preds):
            predictions[example_index] = pose
            # NEW for visualization
            if save_imgs_path is not None:
                out_name = os.path.join(save_imgs_path, 'res_' + str( example_index.item()) + '.png')
                pred_unp = preds_unprocessed[ind, :, :]

                pred_unp_maxval = preds_unprocessed_maxval[ind, :, :]
                pred_unp_prep = torch.cat((pred_unp, pred_unp_maxval), 1)
                inp_img = input[ind, :, :, :]
                # the following line (with -1) should not be needed anymore after cvpr (after bugfix01 in data preparation 08.09.2022)
                # pred_unp_prep[:, :2] = pred_unp_prep[:, :2] - 1
                # save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_name, threshold=0.1, print_scores=True)    # here we have default ratio_in_out=4.

                # NEW: 08.09.2022 after bugfix01

                # import pdb; pdb.set_trace()

                pred_unp_prep[:, :2] = pred_unp_prep[:, :2] * 4 

                if 'name' in meta.keys():       # we do this for the stanext set
                    name = meta['name'][ind]
                    out_path_keyp_img = os.path.join(os.path.dirname(out_name), name)
                    out_path_json = os.path.join(os.path.dirname(out_name), name).replace('_vis', '_json').replace('.jpg', '.json')
                    if not os.path.exists(os.path.dirname(out_path_json)):
                        os.makedirs(os.path.dirname(out_path_json))
                    if not os.path.exists(os.path.dirname(out_path_keyp_img)):
                        os.makedirs(os.path.dirname(out_path_keyp_img))  
                    save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_path_keyp_img, ratio_in_out=1.0, threshold=0.1, print_scores=True)    # threshold=0.3
                    out_name_json = out_path_json   # os.path.join(save_imgs_path, 'res_' + str( example_index.item()) + '.json')
                    res_dict = {
                        'pred_joints_256': list(pred_unp_prep.cpu().numpy().astype(float).reshape((-1))),
                        'center': list(meta['center'][ind, :].cpu().numpy().astype(float).reshape((-1))),
                        'scale': meta['scale'][ind].item()}
                    with open(out_name_json, 'w') as outfile: json.dump(res_dict, outfile)
                else:
                    save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_name, ratio_in_out=1.0, threshold=0.1, print_scores=True)    # threshold=0.3



                '''# animalpose_hg8_v0 (did forget to subtract 1 in dataset)
                pred_unp_prep[:, :2] = pred_unp_prep[:, :2] * 4     ############ Why is this necessary???
                pred_unp_prep[:, :2] = pred_unp_prep[:, :2] - 1
                save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_name, ratio_in_out=1.0, threshold=0.1, print_scores=True)    # threshold=0.3
                out_name_json = os.path.join(save_imgs_path, 'res_' + str( example_index.item()) + '.json')
                res_dict = {
                    'pred_joints_256': list(pred_unp_prep.cpu().numpy().astype(float).reshape((-1))),
                    'center': list(meta['center'][ind, :].cpu().numpy().astype(float).reshape((-1))),
                    'scale': meta['scale'][ind].item()}
                with open(out_name_json, 'w') as outfile: json.dump(res_dict, outfile)'''

                ind += 1

        # Record accuracy and loss for this batch.
        losses.update(loss, input.size(0))
        accuracies.update(acc[0].item(), input.size(0))

        # Show accuracy and loss as part of the progress bar.
        if progress is not None:
            progress.set_postfix_str('Loss: {loss:0.4f}, Acc: {acc:6.2f}'.format(
                loss=losses.avg,
                acc=100 * accuracies.avg
            ))

    predictions = torch.stack(predictions, dim=0)

    return losses.avg, accuracies.avg, predictions